Project Icon

poutyne

简化PyTorch开发 加速神经网络训练

Poutyne是一个简化的PyTorch深度学习框架,能够处理神经网络训练中的大量样板代码。该框架提供简洁的模型训练接口、丰富的回调函数及自动检查点保存功能,显著提升开发效率。Poutyne兼容最新版PyTorch和Python 3.8+,适合需要快速构建和训练神经网络的研究人员及开发者。

Poutyne标志

poutyne 版本 - PyPI PyPI 状态 许可证: LGPL v3 Python 版本 - PyPI CI/CD codecov 下载量

这就是 Poutyne。

Poutyne 是一个简化的 PyTorch 框架,它处理了训练神经网络所需的大量样板代码。

使用 Poutyne 可以:

  • 轻松训练模型。
  • 使用回调来保存最佳模型、执行早停等更多功能。

访问 Poutyne.org 阅读文档。

Poutyne 兼容最新版本的 PyTorchPython >= 3.8

引用

@misc{Paradis_Poutyne_A_Simplified_2020,
    author = {Paradis, Frédérik and Beauchemin, David and Godbout, Mathieu and Alain, Mathieu and Garneau, Nicolas and Otte, Stefan and Tremblay, Alexis and Bélanger, Marc-Antoine and Laviolette, François},
    title  = {{Poutyne: A Simplified Framework for Deep Learning}},
    year   = {2020},
    url    = {https://poutyne.org}
}

快速入门:几秒钟上手 Poutyne

Poutyne 的核心数据结构是 Model,它是一种训练自己的 PyTorch 神经网络的方式。

Poutyne 的工作原理是,你像往常一样创建自己的 PyTorch 模块(神经网络),但在训练时将其输入到 Poutyne Model 中,后者会处理所有步骤、统计和回调,类似于 Keras 的做法。

以下是一个简单的例子:

# 导入 Poutyne Model 并定义一个玩具数据集
from poutyne import Model
import torch
import torch.nn as nn
import numpy as np
import torchmetrics

num_features = 20
num_classes = 5
hidden_state_size = 100

num_train_samples = 800
train_x = np.random.randn(num_train_samples, num_features).astype('float32')
train_y = np.random.randint(num_classes, size=num_train_samples).astype('int64')

num_valid_samples = 200
valid_x = np.random.randn(num_valid_samples, num_features).astype('float32')
valid_y = np.random.randint(num_classes, size=num_valid_samples).astype('int64')

num_test_samples = 200
test_x = np.random.randn(num_test_samples, num_features).astype('float32')
test_y = np.random.randint(num_classes, size=num_test_samples).astype('int64')

选择一个 PyTorch 设备,以便在有 GPU 的情况下在 GPU 上运行:

cuda_device = 0
device = torch.device("cuda:%d" % cuda_device if torch.cuda.is_available() else "cpu")

创建你自己的 PyTorch 网络:

network = nn.Sequential(
    nn.Linear(num_features, hidden_state_size),
    nn.ReLU(),
    nn.Linear(hidden_state_size, num_classes)
)

现在你可以使用 Poutyne 的模型轻松训练你的网络:

model = Model(
    network,
    'sgd',
    'cross_entropy',
    batch_metrics=['accuracy'],
    epoch_metrics=['f1', torchmetrics.AUROC(num_classes=num_classes, task="multiclass")],
    device=device
)
model.fit(
    train_x, train_y,
    validation_data=(valid_x, valid_y),
    epochs=5,
    batch_size=32
)

由于 Poutyne 受 Keras 启发,有人可能注意到这与其中一些函数非常相似。

你可以使用 Poutyne 模型的 evaluate 方法评估网络的性能:

loss, (accuracy, f1score) = model.evaluate(test_x, test_y)

或仅对新数据进行预测:

predictions = model.predict(test_x)

在此处查看完整代码。 另外,查看这里获取回归示例。

Poutyne 的优势之一是回调。它们允许你保存检查点、记录训练统计信息等。查看这个笔记本了解回调的介绍。在这方面,Poutyne 还提供了一个 ModelBundle 类,它使用底层的回调提供自动检查点、日志记录等功能。以下是一个使用示例。

from poutyne import ModelBundle

# 所有内容都保存在 ./saves/my_classification_network
model_bundle = ModelBundle.from_network(
    './saves/my_classification_network', network, optimizer='sgd', task='classif', device=device
)

model_bundle.train_data(train_x, train_y, validation_data=(valid_x, valid_y), epochs=5)

model_bundle.test_data(test_x, test_y)

在此处查看完整代码。 另外,查看这里获取回归示例。


安装

在安装 Poutyne 之前,你必须在环境中安装最新版本的 PyTorch

  • 安装 Poutyne 的稳定版本:
pip install poutyne
  • 安装 Poutyne 的最新开发版本:
pip install -U git+https://github.com/GRAAL-Research/poutyne.git@dev
  • 安装并在提供的 Docker 镜像上进行开发
docker pull ghcr.io/graal-research/poutyne:latest

学习资料

博客文章

  • Medium PyTorch 文章 - 介绍 Poutyne 的基础知识以及它如何帮助你在使用 PyTorch 开发神经网络时提高效率。

示例

查看包含完整工作示例的笔记本文件:

或在Google Colab中:

视频


为Poutyne贡献

我们欢迎用户反馈,无论是关于库中发现的错误还是功能建议!请务必查看我们的贡献指南以了解更多详情。


赞助商

本项目由Frédérik ParadisDavid Beauchemin支持。加入赞助商 - 展示您的❤️和支持,并出现在列表中


许可证

Poutyne采用LGPLv3许可,详见LICENSE文件


为什么叫Poutyne?

Poutyne的名字来源于poutine,这是魁北克著名的菜肴。它通常由炸薯条、吱吱作响的奶酪凝乳和棕色肉汁组成。然而,在魁北克,poutine也有"普通或常见的主题或活动"的含义。因此,Poutyne将摆脱普通的PyTorch训练通常需要的样板代码。

Poutine Yuri Long来自美国弗吉尼亚州阿灵顿[CC BY 2.0]


项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号