Project Icon

StratosphereLinuxIPS

Slips是基于机器学习的开源网络入侵防御系统

Slips是一款强大的开源网络入侵防御系统,通过机器学习检测网络流量中的恶意行为。它支持实时分析网络流量、PCAP文件和来自Suricata等工具的网络流,结合了训练模型、威胁情报和专家规则来触发警报。Slips适用于Linux和MacOS,提供图形和命令行界面,是一个功能全面的网络安全工具。系统能够检测目标攻击和命令控制通道,并可与外部平台集成,实现自动威胁情报更新。

Slips v1.1

License GitHub version Python GitHub language count GitHub repository size Docker Image Size (tag) Docker Pulls

GitHub issues GitHub issues-closed GitHub open-pull-requests GitHub pull-requests closed GitHub contributors GitHub forks GitHub Org's stars GitHub watchers

License Discord Twitter Follow


Table of Contents

Slips: Behavioral Machine Learning-Based Intrusion Prevention System

Slips is a powerful endpoint behavioral intrusion prevention and detection system that uses machine learning to detect malicious behaviors in network traffic. Slips can work with network traffic in real-time, PCAP files, and network flows from popular tools like Suricata, Zeek/Bro, and Argus. Slips threat detection is based on a combination of machine learning models trained to detect malicious behaviors, 40+ threat intelligence feeds, and expert heuristics. Slips gathers evidence of malicious behavior and uses extensively trained thresholds to trigger alerts when enough evidence is accumulated.

Introduction

Slips is the first free software behavioral machine learning-based IDS/IPS for endpoints. It was created in 2012 by Sebastian Garcia at the Stratosphere Laboratory, AIC, FEE, Czech Technical University in Prague. The goal was to offer a local IDS/IPS that leverages machine learning to detect network attacks using behavioral analysis.

Slips is supported on Linux and MacOS only. The blocking features of Slips are only supported on Linux

Slips is Python-based and relies on Zeek network analysis framework for capturing live traffic and analyzing PCAPs. and relies on Redis >= 7.0.4 for interprocess communication.

Usage

The recommended way to use Slips is on Docker.

Linux

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --net=host --cap-add=NET_ADMIN --name slips stratosphereips/slips:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

Macos M1

In macos do not use --net=host if you want to access the internal container's ports from the host.

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --cap-add=NET_ADMIN --name slips stratosphereips/slips_macos_m1:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

Macos Intel

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --net=host --cap-add=NET_ADMIN --name slips stratosphereips/slips:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

For more installation options

For a detailed explanation of Slips parameters

Graphical User Interface

To check Slips output using a GUI you can use the web interface or our command-line based interface Kalipso

Web interface
./webinterface.sh

Then navigate to http://localhost:55000/ from your browser.

For more info about the web interface, check the docs: https://stratospherelinuxips.readthedocs.io/en/develop/usage.html#the-web-interface

Kalispo (CLI-Interface)
./kalipso.sh

For more info about the Kalipso interface, check the docs: https://stratospherelinuxips.readthedocs.io/en/develop/usage.html#kalipso


Requirements

Slips requires Python 3.10.12 and at least 4 GBs of RAM to run smoothly.

Installation

Slips can be run on different platforms, the easiest and most recommended way if you're a Linux user is to run Slips on Docker.


Extended Usage

Linux

Analyse your own traffic without P2P
Analyse your own traffic with P2P
Analyse a pcap without using P2P

Macos M1

Analyse your own traffic without using P2P

MacOS Intel processors

Analyse your own traffic without using P2P
Analyse your own traffic with using P2P
Analyse a PCAP without using P2P

Configuration

Slips has a config/slips.conf that contains user configurations for different modules and general execution.

  • You can change the timewindow width by modifying the time_window_width parameter

  • You can change the analysis direction to all if you want to see the attacks from and to your computer

  • You can also specify whether to train or test the ML models

  • You can enable popup notifications of evidence, enable blocking, plug in your own zeek script and more.

More details about the config file options here

Features

Slips key features are:

  • Behavioral Intrusion Prevention: Slips acts as a powerful system to prevent intrusions based on detecting malicious behaviors in network traffic using machine learning.
  • Modularity: Slips is written in Python and is highly modular with different modules performing specific detections in the network traffic.
  • Targeted Attacks and Command & Control Detection: It places a strong emphasis on identifying targeted attacks and command and control channels in network traffic.
  • Traffic Analysis Flexibility: Slips can analyze network traffic in real-time, PCAP files, and network flows from popular tools like Suricata, Zeek/Bro, and Argus.
  • Threat Intelligence Updates: Slips continuously updates threat intelligence files and databases, providing relevant detections as updates occur.
  • Integration with External Platforms: Modules in Slips can look up IP addresses on external platforms such as VirusTotal and RiskIQ.
  • Graphical User Interface: Slips provides a console graphical user interface (Kalipso) and a web interface for displaying detection with graphs and tables.
  • Peer-to-Peer (P2P) Module: Slips includes a complex automatic system to find other peers in the network and share IoC data automatically in a balanced, trusted manner. The P2P module can be enabled as needed.
  • Docker Implementation: Running Slips through Docker on Linux systems is simplified, allowing real-time traffic analysis.
  • Detailed Documentation: Slips provides detailed documentation guiding users through usage instructions for efficient utilization of its features.

Contributing

We welcome contributions to improve the functionality and features of Slips.

Please read carefully the contributing guidelines for contributing to the development of Slips

You can run Slips and report bugs, make feature requests, and suggest ideas, open a pull request with a solved GitHub issue and new feature, or open a pull request with a new detection module.

The instructions to create a new detection module along with a template here.

If you are a student, we encourage you to apply for the Google Summer of Code program that we participate in as a hosting organization.

Check Slips in GSoC2023 for more information.

You can join our conversations in Discord for questions and discussions. We appreciate your contributions and thank you for helping to improve Slips!

Documentation

User documentation

Code docs

Troubleshooting

If you can't listen to an interface without sudo, you can run the following command to let any user use Zeek to listen to an interface not just root.

sudo setcap cap_net_raw,cap_net_admin=eip /<path-to-zeek-bin/zeek

You can join our conversations in Discord for questions and discussions.

Or email us at

License

GNU General Public License

Credits

Founder: Sebastian Garcia, sebastian.garcia@agents.fel.cvut.cz, eldraco@gmail.com.

Main authors: Sebastian Garcia, Alya Gomaa, Kamila Babayeva

Contributors:

Changelog

https://github.com/stratosphereips/StratosphereLinuxIPS/blob/develop/CHANGELOG.md

Demos

The following videos contain demos of Slips in action in various events:

  • 2022 BlackHat Europe Arsenal, Slips: A Machine-Learning Based, Free-Software, Network Intrusion Prevention System [web]
  • 2022 BlackHat USA Arsenal, Slips: A Machine-Learning Based, Free-Software, Network Intrusion Prevention System
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号