Project Icon

docs

TensorFlow文档资源与社区翻译项目

了解TensorFlow文档的来源及其相关指南和教程。参与文档贡献需参考贡献和风格指南,并通过问题跟踪器提交问题。社区翻译项目由社区贡献、审核和维护,提供多语言支持。

deeplearning-tensorflow2-notebooks - 深度学习实践资源库,基于TensorFlow 2和Keras
GithubKerasTensorFlowreceptive field可视化开源项目深度学习
deeplearning-tensorflow2-notebooks是一个开源的深度学习资源库,基于TensorFlow 2和Keras构建。项目包含多个Jupyter笔记本,涵盖深度学习的基础和高级主题。特色内容包括感受野的计算和可视化,有助于理解深度学习模型的内部机制。这个资源库适合各层次的学习者,提供了实践性的学习材料。项目同时提供波斯语支持,增加了其国际化特性。
serving - 灵活且高效的机器学习模型推理平台
DockerGithubTensorFlow Serving开源项目机器学习模型部署高性能推理
TensorFlow Serving 是一个为生产环境设计的灵活且高性能的机器学习模型推理系统。它管理训练后的模型生命周期,通过高效查询表提供版本化访问,支持多模型和多版本同时部署。系统支持 gRPC 和 HTTP 推理端点,允许无缝部署新版本,支持金丝雀发布和 A/B 测试,并且延迟极低。调度器将推理请求分组以在 GPU 上联合执行,支持包括 TensorFlow 模型、嵌入、词汇表和特征转换在内的多种服务对象。
tfjs-examples - TensorFlow.js机器学习示例集 涵盖浏览器和Node.js应用
GithubJavaScriptTensorFlow.js开源项目机器学习浏览器深度学习
tfjs-examples是一个包含多种TensorFlow.js机器学习示例的项目。涵盖图像分类、文本生成、强化学习等领域,展示了TensorFlow.js在浏览器和Node.js环境中的应用。示例包括模型训练和推理部署,为开发者提供了实用的学习资源和参考案例。
datasets - 公共数据集下载和准备的实用库
GithubMNISTTensorFlow Datasetstf.data.Dataset定制化开源项目性能
TensorFlow Datasets是一个公共数据集下载和准备的实用库,简化数据集加载与处理。通过其API,用户可以访问和使用多个预构建数据集,优化训练管道性能,并确保数据的确定性与可重复性。详情请参考官方教程、指南及API文档,支持在Colab笔记本中交互式操作。此工具适合快速集成数据集与进行机器学习模型训练的开发者。
gan - 开源生成对抗网络框架
GithubTensorFlow-GAN人工智能开源项目机器学习深度学习生成对抗网络
TensorFlow-GAN (TF-GAN) 是一个专注于生成对抗网络 (GANs) 训练和评估的开源库。该库提供核心训练框架、常用 GAN 操作、损失函数和评估指标,支持多种 GAN 架构。TF-GAN 易于安装使用,包含丰富的示例和教程。目前已在 Google 内部项目和多篇研究论文中得到应用,为 GAN 领域的研究和实践提供了有力支持。
lingvo - Tensorflow中高效的序列模型神经网络构建框架
GithubLingvoTensorflow开源项目机器翻译模型训练神经网络
Lingvo由Google维护的高质量框架,专用于在Tensorflow中构建神经网络,特别适用于序列模型的开发。此框架支持多种模型类型,包括自动语音识别、图片处理、语言建模和机器翻译等。Lingvo允许通过pip安装或源代码编译来灵活部署。借助详尽的文档和综合的模型库,用户可以轻松地构建、训练并评估自定义模型。此外,Lingvo还与最新版本的Tensorflow和Python兼容,确保与当前技术生态的同步。
Deep-Learning-Experiments - 深度学习实验和课程指南,涵盖理论与实践
Deep LearningGithubLLMPyTorchSupervised LearningTransformer开源项目
本页面介绍2023版深度学习实验课程,包括理论与实践内容。涵盖监督学习、多层感知器、优化、正则化、卷积神经网络、变压器、自编码器、生成对抗网络和大型语言模型等主题,并提供开发环境、Python、Numpy、PyTorch及Gradio的实践指南。所有文档和代码示例在GitHub上提供,帮助学习者掌握深度学习技术。
hub - 机器学习预训练模型分享与复用平台
GithubKaggle ModelsSavedModelTensorFlow Hub开源项目机器学习模型模型迁移
TensorFlow Hub是机器学习预训练模型的开源分享平台,现已迁移至Kaggle Models。平台提供SavedModel格式的TensorFlow 2模型和tensorflow_hub Python库,支持快速下载和重用模型。开发者可轻松获取预训练模型,加速机器学习项目开发。尽管迁移,tensorflow_hub库仍支持下载原有tfhub.dev模型。
tensorflow-onnx - 将TensorFlow(包括tf-1.x和tf-2.x)、Keras、TensorFlow.js和TFLite模型转换为ONNX格式的工具
GithubKerasONNXPythonTensorFlowtf2onnx开源项目
该工具支持将TensorFlow(包括tf-1.x和tf-2.x)、Keras、TensorFlow.js和TFLite模型转换为ONNX格式,支持命令行和Python API操作。兼容Windows和Linux操作系统,支持Python 3.7至3.10,以及多种ONNX opset(从opset 14至opset 18)和TensorFlow版本。提供详细的安装步骤、转换指南和常见问题解决方案,全面支持saved model、checkpoint和graphdef等多种模型格式。
How-to-use-Transformers - 介绍Transformers库的自然语言处理应用教程
BERTGithubHugging FacePython库Transformers开源项目自然语言处理
该项目提供了由Hugging Face开发的Transformers库的快速入门教程,支持加载大部分预训练语言模型。教程涵盖自然语言处理背景知识、Transformers基础和实战案例,包括pipelines、模型与分词器使用、微调预训练模型及序列标注任务等。示例代码展示了句子对分类、命名实体识别、文本摘要等任务的实现,适合机器学习和NLP开发者参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号