Project Icon

HallusionBench

探索视觉语言模型的幻觉与错觉问题

HallusionBench是一个诊断视觉语言模型中语言幻觉和视觉错觉的测试集。通过图像-文本推理任务,它挑战了GPT-4V和LLaVA-1.5等顶级多模态模型。项目提供案例分析,揭示模型局限性,为改进提供见解。HallusionBench设有公开评测基准,欢迎研究人员贡献失败案例,推动多模态AI发展。

HalluQA - 中文大语言模型幻觉评估基准
GithubHalluQA中文幻觉大型语言模型开源项目评估基准问答任务
HalluQA是一个评估中文大语言模型幻觉问题的基准测试。该项目包含450个涵盖多领域的对抗性问题,考虑中国特色文化因素。HalluQA提供数据集、评估脚本和多选任务,采用GPT-4评估非幻觉率。研究结果揭示不同模型在处理误导性和知识性问题的表现,为中文大语言模型的改进提供参考。
awesome-hallucination-detection - 多模态大语言模型幻觉检测与评估文献综述
GPT-4VGithubUniHDawesome-hallucination-detection大语言模型幻觉检测开源项目
该项目汇总了关于大型语言模型(LVLMs)在多模态任务中幻觉检测的研究文献。这些研究提供了多个评估基准和框架,如HallusionBench、FactCHD、MHaluBench等,用于评估LVLMs在视觉和语言理解中的表现,涵盖了准确性、一致性、解释性等方面的指标。该仓库不仅评估现有模型,还提出新的解决方案,通过验证生成内容的准确性和一致性,减少虚假信息,提升语言模型的可靠性。
llm-hallucination-survey - 大语言模型幻觉问题研究综述
Github事实一致性大语言模型幻觉开源项目自相矛盾评估
该项目全面调查了大语言模型中的幻觉问题,涵盖评估方法、成因分析和缓解策略。研究包括输入冲突、上下文冲突和事实冲突等多种幻觉类型,并汇总了相关学术文献。项目成果有助于提升大语言模型在实际应用中的可靠性,为该领域的研究和开发提供重要参考。
Q-Bench - 评测多模态大语言模型的低层视觉能力
GithubICLR2024Q-Bench低层视觉基准测试多模态大语言模型开源项目
Q-Bench是一个评估多模态大语言模型低层视觉能力的基准测试。它通过感知、描述和评估三个领域,使用LLVisionQA和LLDescribe数据集测试模型性能。该项目采用开放式评估框架,支持研究者提交结果或模型。Q-Bench对比了开源和闭源模型的表现,并与人类专家水平进行对照,为深入理解和提升多模态AI的基础视觉处理能力提供了关键洞察。
hallucination_evaluation_model - 开源幻觉检测模型助力提升LLM输出质量
GithubHHEM-2.1-OpenHuggingfaceRAG人工智能幻觉检测开源项目模型语言模型
HHEM-2.1-Open是一款用于检测大型语言模型(LLM)幻觉的开源工具。该模型在多项基准测试中表现优异,性能超过GPT-3.5-Turbo和GPT-4。它特别适用于检索增强生成(RAG)应用,可评估LLM生成摘要与给定事实的一致性。HHEM-2.1-Open支持无限长度上下文,运行高效,可在普通硬件上使用,是提升LLM输出质量和可靠性的实用工具。
UHGEval - 中文大语言模型无约束生成幻觉评估基准
Eval SuiteGithubUHGEval中文评估基准大语言模型幻觉评估开源项目
UHGEval是一个评估中文大语言模型在无约束生成任务中幻觉现象的基准。该项目基于文本生成和幻觉收集,融合自动标注与人工审核。UHGEval提供判别式、生成式和选择式等多种评估方法。项目还包含Eval Suite评估框架,支持多个幻觉评估基准,可全面评估单个大语言模型的表现。
hallucination-leaderboard - LLM在文档总结任务中的幻觉频率排名
GithubHHEM-2.1LLMVectarafactual consistencyhallucination rate开源项目
Vectara的Hughes幻觉评估模型定期分析和更新LLM排名,揭示各模型在文档总结任务中的幻觉出现频率。排行榜还包括事实一致性率、回答率等关键性能指标,助您识别信息传达准确性最佳的LLM。
MMBench - 全面评估多模态大模型能力的基准测试
GithubMMBench多模态模型开源项目循环评估视觉语言模型评估基准
MMBench是评估视觉语言模型多模态理解能力的基准测试集。它包含近3000道多项选择题,涵盖20个能力维度,采用循环评估和LLM选项提取等创新方法,提供可靠客观的评估。通过细粒度的能力测试和可重复的评价标准,MMBench为多模态模型开发提供了有价值的反馈。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
SEED-Bench - 多模态大语言模型评估基准
GithubSEED-Bench人工智能基准测试多模态大语言模型开源项目评估维度
SEED-Bench是一个全面评估多模态大语言模型的基准测试。它包含28K个多项选择题,涵盖34个评估维度,包括文本和图像生成能力。该项目提供SEED-Bench-H、SEED-Bench-2-Plus等多个版本,分别针对不同评估方面。SEED-Bench为研究人员提供了一个客观比较多模态大语言模型性能的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号