Project Icon

dpn131.mx_in1k

DPN双路径神经网络图像分类模型 支持ImageNet预训练和特征提取

DPN131是基于Dual-Path Networks架构的图像分类模型,在ImageNet-1k数据集上训练。模型包含7930万参数,支持224x224图像输入,提供图像分类、特征图提取和图像嵌入功能。通过timm库可轻松加载使用,适用于多种计算机视觉任务。该模型由MXNet训练并移植到PyTorch,支持批量处理和特征提取。

oneDNN - 优化深度学习应用的跨平台性能库,支持多种处理器架构
CPU优化GithubUXL Foundationdeep learningoneAPI specificationoneDNN开源项目
oneAPI Deep Neural Network Library (oneDNN) 是一个开源的跨平台性能库,提供深度学习应用的核心模块。oneDNN 专为Intel架构处理器、Intel图形处理器和Arm 64位架构处理器进行优化,并实验性支持NVIDIA、AMD、OpenPOWER、IBMz 和 RISC-V 等架构的 GPU 和 CPU。深度学习应用及框架开发者可以利用oneDNN提升在多种硬件上的性能表现。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
d2l-pytorch - MXNet代码转换为PyTorch实现的指南
Dive Into Deep LearningGithubPyTorch卷积神经网络开源项目深度学习线性神经网络
本项目基于《Dive Into Deep Learning》书籍,将MXNet代码转换为PyTorch实现。内容包括安装指南、线性神经网络、多层感知器、卷积神经网络、现代卷积网络、循环神经网络和注意力机制等章节。提供详细教程和示例代码,适合使用PyTorch进行深度学习的开发者。建议克隆仓库或使用nbviewer查看notebook文件。
AttentionDeepMIL - 深度多实例学习的注意力机制算法实现
GithubMNISTPyTorch多实例学习开源项目注意力机制深度学习
AttentionDeepMIL是一个开源的深度多实例学习算法项目,基于PyTorch框架实现。它在LeNet-5模型基础上创新性地添加了注意力机制的MIL池化层,适用于图像分类等多实例学习任务。该项目提供完整的实验环境,包括MNIST-BAGS数据集处理、模型架构和训练脚本,支持CPU和GPU运行。此外,AttentionDeepMIL还展示了在医学图像分析领域的应用潜力,包括对乳腺癌和结肠癌组织病理学数据集的实验支持。
image-gpt - 支持多数据集的生成预训练模型
CIFAR10Fashion-MNISTGithubImage GPTPyTorch开源项目生成式预训练
Image GPT是一个基于生成像素预训练模型(Generative Pretraining from Pixels)的PyTorch实现,支持多种预训练模型和数据集。该项目允许下载预训练模型、量化图像、进行生成预训练和分类微调。它还具有BERT风格的预训练、支持加载OpenAI预训练模型等功能。目前,使用单个NVIDIA 2070 GPU可在Fashion-MNIST上实现高效训练,简化了多种图像数据集上的生成模型训练和应用流程。
gluon-cv - 计算机视觉领域的深度学习模型工具包,支持PyTorch和MXNet框架
GithubGluonCV图像分类对象检测开源项目深度学习计算机视觉
GluonCV是一个面向工程师、研究人员和学生的计算机视觉深度学习工具包,支持快速原型设计。其主要功能包括可复现SOTA结果的训练脚本、对PyTorch和MXNet框架的支持、大量预训练模型,以及简化实现的API设计和社区支持。用户还可以通过AutoGluon执行图像分类和目标检测任务。
DINO - 降噪锚框实现端到端目标检测
COCODINOGithub图像分割开源项目深度学习目标检测
DINO采用改良的降噪锚框,提供先进的端到端目标检测功能,并在COCO数据集上实现了优异的性能表现。模型在较小的模型和数据规模下,达到了63.3AP的优秀成绩。DINO具有快速收敛的特点,使用ResNet-50主干网络仅在12个周期内即可达到49.4AP。项目还提供丰富的模型库和详细的性能评估,用户可以通过Google Drive或百度网盘获取模型检查点和训练日志。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号