Project Icon

hrnet_w18.ms_aug_in1k

HRNet W18图像分类模型 基于ImageNet-1k训练

hrnet_w18.ms_aug_in1k是HRNet团队开发的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有2130万参数,4.3 GMACs计算复杂度,可用于图像分类、特征图提取和图像嵌入。模型提供高分辨率视觉表征,适用于多种计算机视觉任务。通过timm库可方便地加载和使用这一预训练模型。

mobilenetv3_large_100.ra_in1k - MobileNet-v3 轻量级高效图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款针对移动设备优化的图像分类模型。它在ImageNet-1k数据集上训练,采用RandAugment增强技术和RMSProp优化器。模型参数仅5.5M,计算量0.2 GMACs,支持224x224像素输入。除图像分类外,还可用于特征提取和生成图像嵌入,是资源受限环境下的理想选择。
selecsls42b.in1k - SelecSLS图像分类模型实现实时多人3D动作捕捉
GithubHuggingfaceImageNet-1kSelecSLStimm图像分类开源项目模型特征提取
selecsls42b.in1k是基于ImageNet-1k数据集训练的SelecSLS图像分类模型,拥有3200万参数和3.0 GMACs计算量。该模型支持224x224图像输入,可用于图像分类、特征提取和嵌入生成。其独特之处在于能利用单个RGB相机实现实时多人3D动作捕捉,在效率和性能方面表现优异。模型源自XNect项目,代码已在GitHub开源。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
tf_efficientnet_l2.ns_jft_in1k - EfficientNet架构的大规模图像识别与特征提取模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
基于EfficientNet架构开发的图像分类模型,采用Noisy Student半监督学习方法,结合ImageNet-1k和JFT-300m数据集进行训练。模型支持800x800分辨率输入,包含4.8亿参数,可用于图像分类、特征提取和嵌入向量生成。借助timm库实现模型的快速部署,适用于各类图像识别任务。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
deep-high-resolution-net.pytorch - 基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型
GithubHRNet人体姿态估计关键点检测开源项目深度学习高分辨率表示
deep-high-resolution-net.pytorch 项目提供了一个基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型。项目支持多个标准数据集,验证了其可靠性与准确性,也适应于多种视觉任务如图像分类及目标检测等。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号