Project Icon

llama-2-7b-bnb-4bit

提升Llama模型性能,实现速度翻倍与内存节省

项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。

llama-3-8b - 优化Llama 3 效率提升 内存占用减少
AI绘图GithubHuggingfaceLlama3内存使用开源项目性能优化模型模型微调
llama-3-8b项目通过Unsloth技术在Colab平台上提供免费调优服务,支持包括Llama-3 8b和Gemma 7b在内的多种模型。项目以简单操作为特征,使模型在提升两倍以上速度和减少70%内存使用的同时,满足模型高效更新需求,适用于开发者和研究人员。所有笔记本友好初学者,并支持数据集和框架的多样性导出与上传。
Llama-3.2-3B-Instruct-bnb-4bit - Unsloth技术加速大型语言模型微调
GithubHuggingfaceLlama 3.2Unslothtransformers大语言模型开源项目微调模型
Llama-3.2-3B-Instruct-bnb-4bit项目利用Unsloth技术提高大型语言模型微调效率。该方法可将Llama 3.2、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时降低70%内存占用。项目提供多个Google Colab笔记本,支持Llama-3.2、Gemma 2、Mistral等多种模型。这些笔记本操作简便,适合初学者使用,只需添加数据集并运行即可完成模型微调。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
buddhi-128k-chat-7b-GGUF - 高效的文本生成模型量化方式,保障性能与质量
GithubHuggingfacellama.cpp开源项目模型质量量化高精度
本项目通过llama.cpp的量化处理,满足多样硬件需求,提供不同文件格式。i-matrix选项的应用和各类量化方式的整合,提升了模型精度与效率。根据RAM和VRAM情况,用户可以选择合适的量化版本。通过特性图表选择K-quants或I-quants,尤其是I-quants在性能和体积方面更具优势。下载指引详细,便于用户节省存储空间并优化性能,支持多种GPU平台,适合专业用户高效部署。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
unsloth - 提高模型速度,降低内存消耗
GithubLlama 3.1Unsloth.ai免费notebooks内存优化开源项目性能提升
Unsloth提供高效AI模型调优方案,能将处理速度提升2倍,内存消耗降低60%。支持多种NVIDIA GPU型号,并适用于Llama 3.1、Mistral及Gemma等多种模型,全程无需更换硬件。易于操作的免费笔记本特别适合AI初学者。探索我们的网站,体验这一领先技术。
Llama3-8B-1.58-100B-tokens-GGUF - Llama 3模型的GGUF格式优化版本
GithubHuggingfaceLlama3llama.cpp命令行界面开源项目推理模型模型转换
本项目提供Llama3-8B-1.58模型的GGUF格式版本,基于Meta-Llama-3-8B-Instruct模型转换而来。支持通过llama.cpp进行快速部署和推理,包括命令行界面和服务器模式。项目详细介绍了llama.cpp的安装、使用方法,以及从GitHub克隆和构建的步骤,方便开发者进行硬件优化和自定义配置。这一优化版本旨在提高模型的部署效率和推理性能。
codegemma-2b - 深度学习模型微调的新方案:提升效率与内存节约
GemmaGithubHuggingfaceLlama-2Unslothfinetune内存优化开源项目模型
CodeGemma-2b项目使用Unsloth技术,加速多个深度学习模型的微调,包括Mistral、Gemma、Llama等。速度提升最高达5倍,内存使用减少70%。通过Google Colab和Kaggle的免费notebook,用户可以轻松展开微调工作。简化的界面设计支持从数据添加到模型导出的完整流程,适合初学者快速上手。这种创新优化方法节省计算资源,提高模型性能,是开发者提升生产力的有力助手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号