Project Icon

video_features

多模态视频特征提取框架 支持多种深度学习模型

video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。

Video-LLaMA - 指令微调的音视频语言模型实现多模态视频理解
AI对话GithubVideo-LLaMA多模态开源项目视频理解语言模型
Video-LLaMA是一个多模态AI项目,为大型语言模型赋予视频和音频理解能力。该项目基于BLIP-2和MiniGPT-4构建,包含视觉-语言和音频-语言两个分支。经过大规模视频和图像数据预训练及指令微调后,Video-LLaMA能够进行视频分析、音频理解和多轮对话。该模型支持英文和中文交互,为视频内容分析提供了新的AI解决方案。
vidgear - 多线程异步视频处理框架 简化复杂任务
GithubPython库VidGear多线程开源项目异步IO视频处理
VidGear是一个高性能Python视频处理库,提供多线程和异步API框架。基于OpenCV、FFmpeg等库,简化复杂视频处理任务的开发。支持IP摄像头、网络流、屏幕捕获等多种视频源,具备视频稳定、编码、流媒体等功能。其简洁API设计使开发者能以少量代码实现复杂视频处理。
cogvlm2-llama3-caption - 视频转文本方案,助力优化文本-视频模型训练
CogVLM2-CaptionGithubHuggingfacePyTorch开源项目模型视频描述视频转文本训练数据生成
CogVLM2-Llama3-Caption项目专注于将视频数据转换为文本描述,为文本-视频模型提供关键训练数据。利用先进的视频解码和文本生成技术,该工具支持精确视频转录,为包括CogVideoX在内的模型生成高质量训练素材。该模型结合了Transformer技术和灵活处理策略,可在CUDA设备上高效运行,帮助开发者高效进行视频内容分析。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
multimodal - PyTorch多模态模型开发框架
GithubPyTorchTorchMultimodal多模态模型开源项目机器学习深度学习
TorchMultimodal是基于PyTorch的多模态模型开发框架,提供模块化构建块和预训练模型,支持ALBEF、BLIP-2、CLIP等多种架构。该框架包含训练、微调和评估示例,可用于构建内容理解和生成模型。TorchMultimodal整合了PyTorch生态系统,便于研究人员复现和开发先进的多模态多任务模型。
MOFA-Video - 可控图像动画图像到视频扩散模型
ECCV 2024GithubMOFA-Video图像动画开源项目混合控制生成模型
MOFA-Video项目采用稀疏到稠密运动生成和基于流的运动适配技术,能通过轨迹、关键点序列及其组合等多种控制信号将单张图像转化为动画。最新更新包括关键点面部图像动画的推理脚本和轨迹图像动画的训练代码。该项目即将亮相ECCV 2024,并提供多个演示和检查点,便于用户测试和使用。访问项目页面了解更多详情和效果展示。
video-diffusion-pytorch - 开源项目实现文本到视频生成新突破
GithubPytorchU-net开源项目文本到视频深度学习视频生成
video-diffusion-pytorch项目实现了基于扩散模型的文本到视频生成技术。该开源项目采用时空分解U-net结构,将2D图像生成扩展至3D视频领域。支持文本条件生成、BERT编码和批量训练等功能。目前在移动MNIST数据集上表现良好,为研究人员和开发者提供了探索视频生成新前沿的工具。该技术有望在复杂视频生成任务中取得进展。
awesome-video - 优化视频开发的全面资源集锦
Github多媒体处理开源项目播放器编码工具视频资源
该项目汇集了视频开发领域的各类资源,涵盖分析工具、AR/VR/360、字幕、会议、播放器、特定语言库、元数据和媒体处理等方面。包含丰富的学习教程、开发文档、实用工具和程序库,为不同水平的视频开发者提供全面支持。资源内容涉及FFmpeg、HLS、DASH等主流技术,并包括多个开源项目,有助于开发者深入了解和实践视频技术。
scikit-video - 开源Python视频处理库
GithubPython模块scikit-video依赖安装开源项目视频处理
scikit-video是一个Python视频处理库,提供视频读写、滤波、特征提取等功能。它基于scipy、numpy和ffmpeg/libav构建,支持Python 2.7和3.3+版本。该开源项目采用BSD许可证,可通过pip轻松安装,并提供详细文档和测试套件。
AVDC - 从无动作视频学习行为的AI训练框架
AVDCGithub实验代码开源项目无动作视频深度对应视频策略训练
AVDC是一个创新的AI训练框架,能够从无动作视频中学习行为策略。该项目支持Meta-World、iTHOR等多个环境,提供完整的代码库、预训练模型和详细文档。AVDC具有灵活的训练和推理功能,方便研究人员快速上手和复现实验结果,为计算机视觉和机器人学习领域带来新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号