Project Icon

CLIPSelf

视觉Transformer自蒸馏实现开放词汇密集预测

CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。

blip-vqa-capfilt-large - 跨视觉语言任务的统一预训练框架
BLIPGithubHuggingface图像理解图像生成开源项目模型视觉语言预训练视觉问答
BLIP是一个新型视觉-语言预训练框架,可同时应用于理解和生成任务。它通过引导式标注技术高效利用网络数据,在图像-文本检索、图像描述和视觉问答等任务中达到了领先水平。该模型还能零样本迁移到视频-语言任务,展现出强大的泛化能力。项目开源了代码、模型和数据集,为视觉-语言研究提供了宝贵资源。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
blip2-opt-6.7b-coco - 结合图像理解与自然语言处理的多模态AI系统
BLIP-2GithubHuggingfaceOPT-6.7b图像标注图像编码器开源项目模型视觉问答
BLIP-2是一种创新的视觉-语言AI系统,集成了CLIP图像编码器、查询转换器和OPT-6.7b大型语言模型。通过冻结预训练的图像编码器和语言模型,仅训练查询转换器,实现了视觉和语言的有效桥接。该模型能够完成图像描述、视觉问答和基于图像的对话等多样化任务。尽管BLIP-2继承了OPT模型的强大能力,但研究人员在应用时需要注意评估其在特定场景中可能存在的偏见和安全风险。
ViT-SO400M-14-SigLIP - 基于SigLIP的视觉-语言模型实现零样本图像分类
GithubHuggingfaceSigLIPViT图像分类开源项目机器学习模型自然语言处理
ViT-SO400M-14-SigLIP是基于WebLI数据集训练的视觉-语言预训练模型,采用sigmoid损失函数进行图像和文本的联合学习。该模型在零样本图像分类任务中表现出色,具有良好的跨模态理解能力。通过OpenCLIP和timm库,用户可以方便地使用该模型生成图像和文本嵌入。ViT-SO400M-14-SigLIP适用于图像分类、图像检索等多种计算机视觉和自然语言处理任务。
CLIP-ViT-B-32-laion2B-s34B-b79K - 基于LAION-2B数据集训练的CLIP ViT-B/32零样本图像识别模型
CLIPGithubHuggingfaceLAION-2B图像分类多模态模型开源项目模型零样本学习
CLIP-ViT-B-32-laion2B-s34B-b79K是一个基于LAION-2B英文数据集训练的CLIP ViT-B/32模型,在ImageNet-1k上实现66.6%的零样本top-1准确率。该模型适用于零样本图像分类、图像文本检索等任务,由Stability AI提供算力支持,采用OpenCLIP框架训练。此模型为研究人员提供了探索零样本任意图像分类的有力工具。
siglip-so400m-patch14-224 - 增强图像文本任务的性能,探索形状优化模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型视觉零样本图像分类
SigLIP通过sigmoid损失函数优化了CLIP模型的图像和文本匹配性能。此模型在WebLi数据集上预训练,可实现更大的批量训练,同时在小批量下表现出色。适用于零样本图像分类和图像文本检索任务,能在不同环境下获得高效结果。该模型在16个TPU-v4芯片上训练三天,而图像预处理中使用标准化和归一化,提升了计算效率。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
seemore - PyTorch实现的开源视觉语言模型项目
AIGithubPytorchVision Language Model图像处理开源项目机器学习
seemore是一个基于PyTorch的开源视觉语言模型(VLM)项目。它包括图像编码器、视觉-语言投影器和解码器三个核心组件,参考了CLIP和LLaVA等前沿VLM架构。项目提供完整代码实现和详细教程,有助于开发者理解VLM原理。seemore在Databricks平台开发,支持GPU加速,并集成MLFlow用于实验管理。
self-refine - LLM自我反馈迭代优化自然语言处理任务
GithubLLMSelf-Refine开源项目自我反馈自然语言处理迭代优化
Self-Refine是一个创新的自然语言处理项目,利用大型语言模型(LLM)生成、评估和改进自身输出。通过迭代过程,LLM对自己的工作提供反馈并持续优化结果。该项目在缩写生成、对话响应和代码可读性改进等多个任务中展现了效果。这种自我完善方法为提升AI系统性能和可靠性开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号