Project Icon

recognize-anything

通用图像识别模型:支持开放域类别和高精度标签生成

Recognize Anything Model是一系列开源图像识别模型,包括RAM++、RAM和Tag2Text。这些模型能准确识别常见和开放域类别,支持高精度图像标签生成和全面描述。项目提供预训练模型、推理代码和训练数据集,适用于多种计算机视觉任务。模型性能优于现有先进方案,尤其在零样本识别方面表现突出。

Grounded-Segment-Anything - 融合文本引导的开放世界目标检测与分割工具
GithubGrounded-SAM图像分割开源项目目标检测视觉AI
Grounded-Segment-Anything项目结合了Grounding DINO和Segment Anything模型的优势,能够根据文本提示检测和分割图像中的任意物体。该工具为开放世界场景中的目标检测和分割任务提供了有效解决方案,支持自动标注、3D人体网格重建和图像编辑等多种应用。通过提高检测和分割精度并提升工作效率,Grounded-Segment-Anything为计算机视觉领域带来了显著进展。
segment-anything-2 - 新一代图像和视频分割基础模型
AI模型GithubSAM 2图像分割开源项目视频分割计算机视觉
SAM 2是Meta AI研发的图像和视频分割基础模型,扩展了SAM的功能。它采用transformer架构和流式内存,实现实时视频处理。通过模型循环数据引擎,研究团队构建了大规模视频分割数据集SA-V。SAM 2在多种视觉任务中展现出卓越性能,为计算机视觉领域带来新的可能。
depth_anything_vits14 - 大规模无标签数据训练的开源深度估计工具
Depth AnythingGithubHuggingface图像处理开源项目模型深度估计深度感知计算机视觉
Depth Anything是一个基于ViT-L/14架构的深度估计模型,通过大规模无标签数据训练。模型提供Python接口,支持518x518分辨率的图像深度估计,具备良好的泛化能力。采用模块化设计,支持自定义图像预处理和批量处理功能,可集成到现有项目中。研究人员和开发者可通过Hugging Face平台快速部署使用。
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
CLIPSegGithubGrounding DINOSAM实例分割开源项目零样本全景分割
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
all-seeing - 全景视觉识别与关系理解的开放世界AI系统
All-Seeing ProjectGithub关系理解多模态模型大规模数据集开源项目视觉识别
All-Seeing项目开发了全面的视觉识别和理解系统。该项目推出AS-1B大规模数据集和ASM视觉语言模型,实现开放世界的全景视觉识别。其第二版引入关系对话任务,构建AS-V2数据集和ASMv2模型,增强关系理解能力。此外,项目提出CRPE基准测试,为评估关系理解提供系统平台。
ReplaceAnything - 先进的AI图像替换工具 实现精准内容编辑
AI绘图GithubReplaceAnything内容替换图像编辑开源项目深度学习
ReplaceAnything是一个开源的AI图像替换工具,支持服装、背景、人物等多种元素的精准替换,同时保持遮罩区域完整。该项目由阿里巴巴智能计算研究院开发,现已在HuggingFace和ModelScope平台发布演示版本。ReplaceAnything为图像编辑提供了新的可能,展现了AI在内容创作领域的潜力。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
Depth-Anything-V2-Large - 单目深度估计新突破:高精度细节与高效性能的完美平衡
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
Depth-Anything-V2-Large是一款基于大规模数据训练的单目深度估计模型。该模型通过595K合成标记图像和62M+真实未标记图像的训练,在细节精度和鲁棒性方面超越了前代版本。与基于SD的模型相比,它不仅更加高效和轻量,处理速度提升了10倍,还在预训练基础上展现出优秀的微调能力。这一模型为计算机视觉领域提供了性能卓越的深度估计解决方案。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号