Project Icon

U-2-Net

深度嵌套U结构助力显著对象精准检测

U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。

Depth-Anything-V2-Small - 先进高效的开源深度估计工具
Depth-Anything-V2GithubHuggingface图像处理开源项目机器学习模型深度估计计算机视觉
Depth-Anything-V2-Small是一个开源的单目深度估计模型,基于大规模合成和真实图像数据训练。相比前代产品,该模型提供更精细的深度细节和更强的鲁棒性。它比同类基于稳定扩散的模型运行速度快10倍,且更加轻量化。模型支持高效的图像深度推断,可用于各种计算机视觉应用场景。
yolor - 改进的多任务统一网络实时对象检测模型
GithubYOLORYOLOv4多任务学习对象检测开源项目深度学习
该项目实现了一个新型多任务统一网络,基于最新论文支持多任务并在COCO数据集中的实时对象检测上表现出色。优化后的YOLOR模型在测试和验证中均显示出较高的AP值和运行速度,适用于多种实时应用场景。项目提供了详细的安装、训练和测试指南,支持Docker和Colab环境,适合研究人员和开发者在复杂场景中进行高效的对象检测。
STCN - 改进内存覆盖的高效视频对象分割框架
GithubNeurIPSSTCN开源项目神经网络空间时间对应视频目标分割
STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。
upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
GithubHuggingfaceSwin TransformerUperNet开源项目模型特征金字塔网络视觉语义分割
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
CustomNet - 创新的物体定制与多视角生成扩散模型
CustomNetGithub对象定制开源项目文本生成图像深度学习视角控制
CustomNet是一个创新的文本到图像扩散模型框架,专注于物体定制和多视角生成。该模型整合了3D新视角合成能力,实现物体空间位置和视角的灵活调整,同时保持物体身份。CustomNet无需测试时优化,可同时控制视角、位置和文本,在身份保持、多样性和协调性方面表现出色。这一技术为物体定制和图像生成领域开辟了新的可能性。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
HybridNets - 实时多任务交通场景感知网络
GithubHybridNets可行驶区域分割多任务感知开源项目目标检测车道线检测
HybridNets是一个实时多任务交通场景感知网络,集成了交通对象检测、可行驶区域分割和车道线检测功能。该网络可在嵌入式系统上实时运行,在BDD100K数据集的目标检测和车道检测任务中达到了最先进水平。HybridNets平衡了实时性能和多任务准确性,为自动驾驶和高级驾驶辅助系统提供了高效的视觉感知解决方案。
Deep-Learning-for-Tracking-and-Detection - 使用深度学习进行对象检测和跟踪的论文与资源合集
GithubRCNNYOLOdeep learningmulti object trackingobject detection开源项目
本项目汇集了有关深度学习在对象检测和跟踪领域的论文、数据集、代码及各种资源。内容涵盖静态检测、视频检测、多对象跟踪和单对象跟踪等主题,并提供了多种经典模型如RCNN、YOLO、SSD的实现和改进方案。此外,项目还涵盖了图像和视频分割、光流、运动预测等任务的资源,为研究人员和开发者提供了详尽的参考资料。
yolov5-face - 基于YOLOv5框架的实时高精度人脸检测
BlazeFaceGithubMulti-Task-FacialTensorRTYOLOv5-facencnn-android-yolov8-face开源项目
基于YOLOv5框架的实时高精度人脸检测。该项目展示了不同版本(包括YOLOv5、YOLOv7、YOLOv8)在人脸检测中的性能表现,不同难度和硬件环境下的测试结果。提供了多种开源演示和预训练模型下载链接,支持多个平台如TensorRT、Android、OpenCV等。详细的训练和评估指南帮助用户在WIDERFace数据集上进行测试和验证。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号