Project Icon

LongQLoRA

大语言模型上下文长度高效扩展的创新方法

LongQLoRA是一种扩展大语言模型上下文长度的方法,可在单个32GB V100 GPU上将LLaMA2模型的上下文长度从4096扩展到8192。该方法在PG19和Proof-pile数据集上表现优异,仅需1000步微调即可达到接近MPT-7B-8K的性能。项目还提供了预训练数据集、指令微调数据集以及扩展上下文长度的模型。

CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
Upstage-Llama-2-70B-instruct-v2-AWQ - 先进的低比特量化技术优化文本生成模型
GithubHuggingfaceLlama 2 70B Instruct v2Upstage开源项目文本生成模型量化
Upstage通过AWQ模型实现高效的4比特量化,相较于GPTQ提供更快的推理速度。AWQ支持高吞吐量的多用户服务器环境,可在更小的GPU上运行,从而降低部署成本。此外,模型在多项基准测试中表现卓越,能够在单个48GB GPU上运行70B模型,便于快速部署。了解更多关于该模型的性能和应用场景。
Meta-Llama-3-8B-Instruct-GPTQ-4bit - 4位量化Llama 3指令模型实现轻量级高性能自然语言处理
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。
ScaleLLM - 优化大语言模型推理,兼容多种开源模型
GithubScaleLLM大模型推理开源项目生产环境集成开发高效性能
ScaleLLM是一个为大语言模型(LLMs)设计的高效推理系统,适用于生产环境。支持Llama3.1、Gemma2、Bloom、GPT-NeoX等多种开源模型,集成了CUDA图、前缀缓存、分块填充和推测解码等高级功能。项目正在积极开发,目标是提高效率并加入更多特性。现已上架PyPI,可通过pip安装。ScaleLLM还提供兼容OpenAI的REST API和本地聊天机器人UI,支持离线批量推理和在线分布式推理。
unit-minions - 自主训练LoRA以提升代码与文档生成效率
AI研发提效GithubLoRA代码生成开源项目测试代码生成用户故事生成
了解'unit-minions'如何利用LoRA模型进行自主训练,以显著提升软件开发周期中的AI辅助效能。项目内容包括完整的训练教程、操作视频以及代码实战演示,详细呈现从需求分析到代码生成的自动化全过程。通过LLaMA和ChatGLM LoRA模型,有效支持代码辅助、测试和需求详细化,旨在提供科学的工具优化工程师的工作流程,提升开发效率。
Qwen2-72B-Instruct-GPTQ-Int4 - 提升多语言处理能力,支持超长文本输入
GithubHuggingfaceQwen2-72B-Instruct-GPTQ-Int4多语言功能开源项目模型生成能力语言模型长文本处理
Qwen2-72B-Instruct-GPTQ-Int4基于Transformer架构,支持多语言生成和理解,具备长达131,072个标记的处理能力。多专家模型设计增强了在语言生成、代码编写及数学推理方面的表现。提供详细的模型部署指导,利用YARN技术提升长文本处理性能。量化模型基准测试和速度对比数据可协助开发者优化深度学习应用。更多信息和更新请参阅相关博客及文档。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
LLM2LLM - 探索迭代数据增强提升语言模型性能
GSM8KGithubLLM2LLM大语言模型开源项目数据增强迭代学习
LLM2LLM项目提出了一种迭代数据增强方法,旨在提升大型语言模型的性能。该方法通过数据生成和筛选,创建高质量训练数据,逐步改进模型能力。研究团队在GSM8K等数据集上的实验证实了方法的有效性。项目已开源代码并提供复现指南,为相关研究和开发工作提供了参考资源。
orpo - 无参考模型的语言模型偏好优化技术
GithubORPO人工智能开源项目机器学习模型训练自然语言处理
ORPO是一种新型语言模型训练方法,无需参考模型即可实现偏好优化。项目展示了ORPO在AlpacaEval、MT-Bench和IFEval等基准测试中的性能。ORPO训练的Mistral-ORPO-β模型在AlpacaEval官方排行榜上获得14.7%的长度控制胜率。项目开源了多个预训练模型和训练日志,为AI研究和开发提供了重要资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号