Project Icon

SOLC

基于深度学习的SAR和光学遥感影像土地利用分类框架

SOLC是一个开源的遥感图像语义分割框架,专注于SAR和光学影像的土地利用分类。该项目基于PyTorch实现了多种深度学习模型,包括DeepLabv3+、UNet和SegNet等。其中SOLC V7模型采用了双流DeepLabv3+架构,并融合SAGate和ERFB模块,在WHU-OPT-SAR数据集上实现了最佳性能。项目提供了完整的源代码、预训练权重和使用说明,为遥感图像分析研究提供了实用工具。

SAT - 突破性医学图像分割模型,支持多模态多区域文本提示
GithubSAT医学图像分割多模态开源项目文本提示通用分割模型
SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。
SegVol - 突破性的通用交互式三维医学影像分割模型
3D建模CT扫描GithubSegVol人工智能医学图像分割开源项目
SegVol是一个创新的通用交互式三维医学影像分割模型,支持点、框和文本提示输入。该模型在96,000个CT扫描数据集上训练,可分割超过200个解剖类别。SegVol开源了推理代码、训练代码、模型参数以及预训练的ViT参数。通过内部和外部验证,SegVol展现出优秀的分割性能,为医学影像分析提供了新的解决方案。
SeeSR - 基于语义感知的实景图像超分辨率方法
GithubSeeSR图像超分辨率开源项目扩散模型真实世界图像语义感知
SeeSR是一种新型语义感知实景图像超分辨率技术,结合稳定扩散模型和语义信息提升低分辨率图像质量。该方法已被CVPR2024接收并在GitHub开源。SeeSR可处理多种场景图像,并支持快速推理。项目提供预训练模型、测试数据集和使用说明,便于研究和应用。此外,项目还包含DAPE和SeeSR模型的训练指南,以及用于生成训练数据的工具。SeeSR采用tiled vae方法节省GPU内存,并提供Gradio演示界面。该技术在多个真实世界图像数据集上展现出优异性能。
sc_depth_pl - 通过自我监督学习实现视频中的单目深度估计
ARNGithubSC-Depthmonocular depthpytorchself-supervised learning开源项目
SC-Depth项目提供了SC-DepthV1, V2和V3版本的PyTorch Lightning实现,专注于从视频中进行自我监督的单目深度估计。SC-DepthV1引入了几何一致性损失和自发现蒙板,提高了深度预测的准确性。SC-DepthV2通过引入自动矫正网络(ARN)解决了手持相机视频中大相对旋转的问题。SC-DepthV3利用外部预训练的深度估计网络,在动态场景中显著提升了单目深度估计的准确性。该项目提供了详细的安装指南、数据集组织和训练流程,支持多种数据集和自定义数据的训练。了解更多关于SC-Depth的详细信息以及其在多个挑战性数据集上的评估结果。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
ESANet - 高效RGB-D语义分割网络用于室内场景分析
ESANetGithubRGB-D实时处理室内场景分析开源项目语义分割
ESANet是一个高效的RGB-D语义分割网络,专为室内场景分析设计。该网络在NVIDIA Jetson AGX Xavier上实现实时语义分割,适用于移动机器人的实时场景分析系统。项目提供训练和评估代码,支持模型转换至ONNX和TensorRT,并可测量推理时间。ESANet在NYUv2、SUNRGB-D和Cityscapes等数据集上展现出优异性能。
sentinel2-cloud-detector - Sentinel-2卫星图像云检测Python包
GithubPython包Sentinel-2s2cloudless云检测开源项目机器学习
sentinel2-cloud-detector是一个针对Sentinel-2卫星图像的云检测Python包。它采用单场景像素级云检测器和机器学习算法,生成云识别结果和概率图。该工具通过国际合作验证,提供多种安装方式和使用示例,适用于遥感图像处理。
ViT-SO400M-14-SigLIP - 基于SigLIP的视觉-语言模型实现零样本图像分类
GithubHuggingfaceSigLIPViT图像分类开源项目机器学习模型自然语言处理
ViT-SO400M-14-SigLIP是基于WebLI数据集训练的视觉-语言预训练模型,采用sigmoid损失函数进行图像和文本的联合学习。该模型在零样本图像分类任务中表现出色,具有良好的跨模态理解能力。通过OpenCLIP和timm库,用户可以方便地使用该模型生成图像和文本嵌入。ViT-SO400M-14-SigLIP适用于图像分类、图像检索等多种计算机视觉和自然语言处理任务。
sam2-hiera-large - 基于深度学习的高性能图像分割模型
GithubHuggingfaceSAM2图像分割开源项目掩码生成模型模型推理自动掩码生成
SAM2-Hiera-large是Meta公司开发的SAM2模型大型变体,专注于图像分割任务。该模型支持基于边界框的预测和自动掩码生成,可用于处理图像和视频对象分割。开发者可通过Python接口调用模型,实现高效的分割效果。项目提供了详细的使用示例和丰富的资源,方便用户深入了解和应用SAM2技术。
super-gradients - 开源工具库简化SOTA计算机视觉模型的训练与部署
GithubSuperGradients开源项目模型训练深度学习计算机视觉预训练模型
Super-Gradients是一个专注于计算机视觉的开源深度学习库。它提供预训练SOTA模型和易用训练工具,支持分类、分割、检测等任务。该项目集成多种训练技巧,兼容主流部署框架,可快速将模型应用于生产。Super-Gradients适用于学术研究和工业应用,是一个高效的计算机视觉开发工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号