Project Icon

irl-imitation

逆强化学习算法在Python和Tensorflow中的实现

该项目实现了多种逆强化学习(IRL)算法,包括线性逆强化学习、最大熵逆强化学习和深度最大熵逆强化学习,基于Python和Tensorflow。支持在2D和1D网格世界中的应用。项目依赖于Python 2.7、cvxopt、Tensorflow 0.12.1和matplotlib,通过代码示例和命令行选项,有助于快速理解和使用这些算法。为逆强化学习领域的研究者提供了重要的参考资源。

d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning - CARLA仿真中的深度强化学习自动驾驶模型
CARLAGithubPPO变分自编码器开源项目深度强化学习自动驾驶
该项目在CARLA仿真环境中,使用深度强化学习方法进行自动驾驶训练。通过结合PPO算法和变分自编码器(VAE),加速学习并提高驾驶决策能力。项目采用Python和PyTorch构建,重点在于自动驾驶和障碍物回避的持续学习。对于推动自动驾驶技术和决策效率研究具有显著意义。
rl_games - 强化学习框架支持多环境及算法的高性能实现
GPU加速GithubRL Games多智能体训练开源项目强化学习机器人学习
rl_games是一个高性能强化学习库,实现了PPO、A2C等算法,支持NVIDIA Isaac Gym、Brax等环境的GPU加速训练。该库具备异步actor-critic、多智能体训练、自对弈等功能,可在多GPU上并行。rl_games提供Colab notebook示例便于快速上手,在多个基准测试中表现出色。作为一个功能丰富的强化学习工具,rl_games兼具高性能和易用性。
torch-imle - 将离散优化算法融入深度学习的创新方法
GithubI-MLEPyTorch开源项目梯度估计深度学习组合优化
torch-imle是一个PyTorch库,通过I-MLE梯度估计器将离散优化算法融入深度学习。它使用创新的采样和分布方法,实现了离散优化问题在深度学习中的应用,如最短路径学习。该库采用Perturb-and-MAP方法和新颖的噪声扰动来近似采样复杂分布,并提供替代经验分布。torch-imle通过梯度下降学习最优路径权重,为深度学习中的离散优化问题提供强大的解决方案。
reinforcement_learning_course_materials - 强化学习完整开源课程资料 包括讲义练习和视频
GithubPython开源项目强化学习教学视频练习题课程材料
这个项目提供了全面的强化学习课程资料,包含讲义、练习题及答案和教学视频。内容覆盖从基础到高级的强化学习知识,如马尔可夫决策过程、动态规划、蒙特卡洛方法和时序差分学习等。每个主题配有详细讲解和Python代码实现。所有资料均为开源,适合自学者和教育工作者使用。该资源为强化学习的学习和教学提供了实用全面的材料支持。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
ReinforcementLearning.jl - 高性能Julia强化学习框架
GithubJuliaReinforcementLearning.jl开源项目强化学习机器学习
ReinforcementLearning.jl是Julia语言开发的强化学习框架,提供精心设计的组件和接口。研究人员可轻松实现新算法、进行基准测试和算法比较。框架支持从传统表格方法到深度强化学习,注重实验可重复性。其核心设计原则包括可重用性、可扩展性和易用性,适合各类强化学习实验和研究。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
awesome-exploration-rl - 强化学习探索策略全面指南
Github实验开源项目强化学习探索方法环境算法
该项目聚焦强化学习探索方法,提供最新研究论文、分类体系和可视化案例。涵盖经典和前沿探索策略,持续追踪领域进展。对研究人员和实践者而言是宝贵参考,可用于研究探索-利用权衡或解决具体挑战。项目内容全面且定期更新,是强化学习探索领域的重要资源库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号