Project Icon

tiny-tensorrt

简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型

tiny-tensorrt是一个简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型。依赖CUDA、CUDNN和TensorRT,兼容多个版本。项目已停止维护,建议使用TensorRT的Python API或trtexec/polygraphy工具。更多信息请参考项目Wiki。

TensorRT - 优化深度学习推理的开源平台
CUDADockerGithubNVIDIAONNXTensorRT开源项目
NVIDIA TensorRT 开源软件提供插件和 ONNX 解析器的源码,展示 TensorRT 平台功能的示例应用。这些组件是 TensorRT GA 版本的一部分,并包含扩展和修复。用户可以轻松安装 TensorRT Python 包或根据构建指南编译。企业用户可使用 NVIDIA AI Enterprise 套件,并可加入 TensorRT 社区获取最新产品更新和最佳实践。
onnx-tensorrt - ONNX 的 TensorRT 后端
CUDAGithubInstanceNormalizationONNXProtobufTensorRT开源项目
本项目实现对ONNX模型的高效解析,支持在最新TensorRT 10.2版本上运行。还覆盖了多个ONNX操作符,提供详细的安装和构建指南。项目中包含C++和Python的使用示例,方便用户集成和运行ONNX模型。常见问题解答和变更日志有助于解决使用中的问题。
tensorrtx - TensorRT深度学习网络实现库
GPU加速GithubTensorRTYOLO系列开源项目模型转换深度学习网络
TensorRTx项目使用TensorRT API实现主流深度学习网络。它提供灵活构建、调试和学习TensorRT引擎的方法,支持YOLO、ResNet、MobileNet等多种模型。兼容TensorRT 7.x和8.x版本,并包含详细教程和常见问题解答,方便用户快速入门。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
TensorRT_Tutorial - 深度学习推理加速实践指南
GPU加速GithubINT8量化TensorRT开源项目性能优化深度学习
TensorRT_Tutorial项目是一个综合性资源库,提供NVIDIA TensorRT深度学习推理加速的实用指南。项目包含中文文档翻译、视频教程、博客文章和代码示例,覆盖TensorRT的基础使用和高级优化。内容涉及核心功能介绍、实际应用经验和优化技巧,为深度学习从业者提升模型推理性能提供了宝贵参考。
torch2trt - PyTorch模型转TensorRT加速工具
GPU加速GithubPyTorchTensorRTtorch2trt开源项目模型转换
torch2trt是一款将PyTorch模型转换为TensorRT的开源工具。它基于TensorRT Python API开发,具有简单易用和灵活可扩展的特点。用户通过单个函数调用即可完成模型转换,还支持自定义层转换器。该工具适配多种常用模型,并提供模型保存和加载功能。torch2trt能显著提升NVIDIA设备上的模型推理性能,适用于PyTorch模型推理加速场景。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号