Project Icon

lcnn

高效的端到端线框解析神经网络

L-CNN是一种用于图像线框检测的高效神经网络。该项目在GitHub上开源了完整的PyTorch实现,包含数据处理、模型训练和评估等模块。L-CNN在多项定量指标上超越了现有方法,为线框解析领域提供了新的基准。项目还提供了预训练模型,方便研究者进行复现和进一步开发。

lang-seg - 语言驱动的零样本语义图像分割模型
CLIPGithubLSeg开源项目计算机视觉语义分割零样本学习
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
efficientdet - EfficientDet目标检测模型的PyTorch实现
COCO数据集EfficientDetGithub开源项目深度学习目标检测计算机视觉
本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。
ncnn - 移动端神经网络推理框架
Githubncnn开源项目深度学习神经网络移动平台腾讯
ncnn 是一个专为移动端设计,无第三方依赖的开源神经网络推理框架。它支持跨平台功能,低内存占用及在手机CPU上的高速运算能力。利用 ncnn,开发者能够迅速在移动应用中部署深度学习模型,加入智能化功能。该框架已在众多应用程序中使用,如QQ和微信。同时,ncnn 支持 Vulkan API,优化了GPU加速功能,致使在移动设备上表现卓越。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
STCN - 改进内存覆盖的高效视频对象分割框架
GithubNeurIPSSTCN开源项目神经网络空间时间对应视频目标分割
STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。
TopoNet - 自动驾驶场景拓扑推理的图神经网络方法
GithubOpenLane-V2TopoNet图神经网络场景拓扑推理开源项目自动驾驶
TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。
llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
pytorch-hed - PyTorch重实现的全息嵌套边缘检测HED算法
GithubHEDPyTorch开源项目深度学习计算机视觉边缘检测
该项目是Holistically-Nested Edge Detection (HED)算法的PyTorch重新实现。项目提供命令行工具进行图像边缘检测,使用官方权重但在BSDS500数据集上ODS评分为0.774,略低于原始Caffe版本的0.780。项目包含使用说明、性能对比和引用信息,为研究和开发人员提供HED算法的实现参考。
qinglong_controlnet-lllite - 轻量级动漫图像控制模型集成多种处理功能
AI绘画ControlNet-LLLiteGithubHuggingface图像处理开源项目模型模型训练深度学习
ControlNet-LLLite是一套基于ControlNet架构的轻量级图像控制模型,针对动漫图像处理进行了优化。它支持动漫人物面部分割、线条提取、深度图生成和色彩重构等功能。项目提供多个预训练模型,如AnimeFaceSegment、Normal和T2i-Color,可与ComfyUI和SD-WebUI集成。这套工具适用于需要精确控制动漫图像生成和编辑的场景。
liquid_time_constant_networks - Liquid Time-Constant Networks (LTC) 的代码库
BPTTGithubLiquid time-constant NetworksTensorFlowcontinuous-time modelspython3开源项目
本项目提供了Liquid time-constant Networks等连续时间模型的官方训练资源。支持使用TensorFlow和Python进行模型训练与评估,适用于手势分割、房间占用检测、交通量预测等多种数据集。通过详细的步骤和参数设置指导,科研人员和开发者可以优化并存储训练结果,深入探索连续时间模型的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号