Project Icon

pyEPR

自动化约瑟夫森量子电路设计与分析框架

pyEPR是一个开源的Python模块,用于自动化约瑟夫森量子电路的设计和分析。该框架基于能量参与比(EPR)方法,可快速分析复杂超导量子电路。pyEPR集成了HFSS等电磁仿真软件,自动执行本征模分析和哈密顿量计算,简化了量子比特和谐振腔的设计流程。目前已被耶鲁大学、IBM等多家量子计算机构采用。

einops - 灵活高效的张量操作,兼容多个框架
Githubeinopsnumpypytorchtensor操作开源项目深度学习
Einops 提供简洁高效的张量操作,适用于 numpy、pytorch、tensorflow、jax 等多个框架。通过易于理解的 Einstein 风格操作符,提高代码的可读性和可靠性。主要功能包括张量的重新排列、简化、复制、打包与解包。Einops 适用于深度学习和复杂数据处理任务,是开发者优化代码的理想工具。
schnetpack - 原子级系统深度学习建模工具包
GithubSchNetPack分子动力学原子系统开源项目深度神经网络量子化学
SchNetPack是一个开源的深度学习工具包,用于原子级系统建模。它提供了构建和训练神经网络的基础组件,可预测分子和材料的势能面及量子化学性质。该工具包支持SchNet和PaiNN等先进模型,能够计算偶极矩、极化率等多种属性,并集成了分子动力学模拟功能。SchNetPack简化了新模型的开发和评估流程,为原子级机器学习研究提供了有力支持。
pynapple - 轻量级Python库用于神经生理数据分析
GithubPython库pynapple开源软件开源项目时间序列神经数据分析
pynapple是一个轻量级Python库,专门用于神经生理数据分析。它提供了多功能的工具集,可分析时间序列(如尖峰时间、行为事件)和时间间隔(如试验、大脑状态)等典型神经科学数据。该库包含调谐曲线和互相关图等通用函数,支持多维时间序列分析,并与NumPy高度兼容。pynapple具有详细的文档和教程,适用于各类神经科学研究。
evo - 实现跨尺度DNA序列建模与设计的开源工具
DNA建模EvoGithub基因组尺度序列设计开源项目生物基础模型
Evo是一个开源的生物基础模型,专注于DNA序列的长上下文建模和设计。基于StripedHyena架构,Evo实现了单核苷酸级别的序列建模,具有近乎线性的计算和内存扩展性。该模型拥有70亿参数,在OpenGenome数据集上训练,包含约3000亿个原核全基因组标记。Evo提供8K和131K上下文长度的预训练模型,适用于从分子到基因组尺度的序列分析和生成任务。研究人员可通过HuggingFace和Together API等多种方式使用Evo,为DNA序列研究提供了强大而灵活的工具。
pyqtgraph - 基于PyQt的科学计算可视化库 支持2D/3D绘图与数据分析
GithubPyQtGraphPython图形库Qt框架开源项目数据可视化科学计算
PyQtGraph是一个纯Python开发的图形库,为科学和工程应用提供高性能数据可视化。基于PyQt/PySide和NumPy,它支持快速2D/3D绘图、图像处理等功能。兼容Python 3.10+和Qt5/6,可通过多个第三方库扩展功能。PyQtGraph以其简单易用和高效性能,适用于各类科学计算和数据分析项目。
PyFR - 开源Python流体动力学框架 适用多种硬件平台
GithubPyFRPython框架开源软件开源项目数值计算流体动力学
PyFR是基于Python的开源流体动力学框架,主要解决对流-扩散问题。它使用Huynh通量重构方法,支持混合非结构网格上的多种控制系统求解。借助内置领域特定语言,PyFR能针对不同硬件平台优化性能。该项目欢迎社区贡献,并为用户提供全面的文档和测试案例。PyFR适用于需要进行高性能流体动力学模拟的科研和工程领域。
egnn-pytorch - PyTorch实现的E(n)等变图神经网络
EGNNGithub分子预测图神经网络坐标更新开源项目特征更新
这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。
deephyper - 自动化机器学习任务的开源优化框架
DeepHyperGithub开源项目机器学习自动化深度集成神经架构搜索超参数优化
DeepHyper是一个专注于自动化机器学习任务的Python开源框架。它提供了超参数优化、神经网络架构搜索和深度集成不确定性量化等功能。支持单机和分布式环境,适用于多种场景。DeepHyper简化了机器学习工作流程,为研究人员和开发者提供了强大的工具。项目包含详细文档、快速入门指南和活跃的社区支持,方便用户快速上手和深入使用。
pepy - Python包数据统计与分析服务
GithubPePyPython包后端服务开源项目统计数据
pepy是一个专注于展示Python包统计数据的开源后端服务。它通过BigQuery官方数据源每日更新包下载量信息,采用DDD和CQS设计模式构建。pepy为开发者提供了有价值的洞察,同时鼓励社区参与贡献。作为Python生态系统的分析工具,pepy为包的受欢迎程度和使用趋势提供了重要参考。该项目提供便捷的开发环境设置,方便开发者参与和使用。
keops - 大规模矩阵运算与自动微分的高效GPU加速库
GPU计算GithubKeOps开源项目核方法符号矩阵自动微分
KeOps是一个开源库,专门用于高效计算大型数组的归约运算。它集成了高效C++程序和自动微分引擎,支持Python、Matlab和R等多种编程语言。KeOps尤其适合处理核矩阵向量乘积、K近邻查询和N体问题等计算,即使在核矩阵或距离矩阵超出内存容量的情况下也能高效运行。与PyTorch GPU基准相比,KeOps在多种几何应用中能实现10-100倍的性能提升,广泛应用于核方法和几何深度学习等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号