Project Icon

yolov3-tf2

YOLOv3的TensorFlow实现,目标检测解决方案

该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。

YoloDotNet - 基于C#的Yolov8和Yolov10实时目标检测库
GithubYoloDotNet图像处理对象检测开源项目性能优化深度学习
YoloDotNet是基于.NET 8的C#库,支持Yolov8和Yolov10模型进行实时目标检测。该库集成ML.NET和ONNX运行时,并支持CUDA GPU加速,提供分类、目标检测、OBB检测、分割和姿态估计等功能。YoloDotNet在CPU和GPU上均可高效运行,适用于各种计算机视觉应用场景。
YOLOMagic - 增强YOLOv5视觉任务框架功能与用户体验
GithubYOLOv5图像推理开源项目注意力机制网络模块视觉任务
YOLO Magic🚀 是一个基于YOLOv5的扩展项目,为视觉任务提供更强大的功能和简化的操作。该项目引入了多种网络模块,如空间金字塔模块、特征融合结构和新型骨干网络,并支持多种注意力机制。通过直观的网页界面,无需复杂的命令行操作即可轻松进行图像和视频推理。无论是初学者还是专业人员,YOLO Magic🚀都能提供出色的性能、强大的定制能力和广泛的社区支持。
Dive-into-DL-TensorFlow2.0 - TensorFlow 2.0 深度学习中文教程与代码实现
GithubTensorFlow2代码重构动手学深度学习开源项目机器学习深度学习
本项目将《动手学深度学习》一书中的MXNet代码改为TensorFlow 2.0实现,提供完整的中文学习资源,涵盖线性回归、卷积神经网络、循环神经网络等核心内容。适合对深度学习感兴趣的初学者,只需掌握基础数学和Python编程即可入门。
JSON2YOLO - COCO到YOLO格式转换工具 提升目标检测效率
COCO2YOLOGithubUltralytics开源项目数据集转换机器学习目标检测
JSON2YOLO是一个开源数据集转换工具,专注于将COCO格式JSON数据转换为YOLO格式。这款跨平台工具支持Linux、MacOS和Windows,为机器学习实践者简化了数据处理流程。它不仅优化了数据转换过程,还能提升目标检测模型的训练效率。项目源码可在GitHub获取,用户也可加入Discord社区交流。
TensorFlow-World - TensorFlow教程与代码优化指南
GithubTensorFlow开源项目教程机器学习深度学习
本项目提供全面易懂的TensorFlow教程,每个教程均附源代码和详细文档,帮助开发者和研究者快速高效地掌握TensorFlow。内容涵盖基础操作、机器学习、神经网络等多个领域,并提供虚拟环境安装指南,避免包冲突并支持环境定制。
attention-ocr - 基于注意力机制的视觉OCR模型,实现与导出工具
Attention-OCRGithubOCRTensorflow人工智能图像识别开源项目
该项目提供了基于注意力机制的OCR模型,结合了CNN与LSTM,用于图像识别,并能够导出为SavedModel或frozen graph格式。用户可以通过生成TFRecords数据集、训练、测试及可视化等步骤完整运行该OCR系统。项目还支持通过Tensorflow Serving提供REST API服务,并可以在Google Cloud ML Engine上进行模型训练。目前该项目依赖Tensorflow 1.x,未来计划升级到Tensorflow 2。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
YOLOX - 无锚目标检测算法YOLOX,设计简洁性能优越
GithubMegEnginePyTorchYOLOXanchor-freeobject detection开源项目
YOLOX是一种无锚版YOLO,设计简洁,性能更优,旨在弥合研究与工业界的差距。项目基于PyTorch实现,并提供MegEngine版本。支持可视化工具、JIT编译、快速训练优化等多项更新。未来计划推出YOLOX-P6、大模型、Objects365预训练和Transformer模块等功能。通过融合ONNX、TensorRT、OpenVINO等多种部署方案,满足不同应用场景需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号