Project Icon

tsfeatures

高效提取时间序列特征的R工具包

tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。

pytimetk - 快速高效的Python时间序列分析库
GithubPython库pytimetk可视化开源项目数据处理时间序列分析
pytimetk是一个高效的Python时间序列分析库,通过简洁语法和优化计算简化了时间序列操作和可视化。相比pandas,它提供3-3500倍的速度提升,并减少代码复杂度。主要功能包括快速时间聚合、便捷绘图、日历特征提取和异常检测等。pytimetk适用于商业预测和科学研究,为时间序列分析提供了全面的解决方案。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
stringi - R语言全面字符串处理包
GithubICUR包Unicodestringi字符串处理开源项目
stringi是R语言中用于字符串和文本处理的综合性软件包。基于Unicode ICU库开发,提供快速、一致且跨平台的功能。支持字符串连接、搜索、排序、大小写转换、音译等多种操作,适用于各种语言环境。作为R语言中最全面的文本处理工具之一,stringi为数据分析和自然语言处理提供了强大支持。
Awesome-SSL4TS - 自监督学习在时间序列分析中的应用资源
Github对比学习开源项目时间序列生成式方法自监督学习表示学习
这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
tsmoothie - Python时间序列平滑和异常检测库
BootstrapGithubtsmoothie平滑处理开源项目异常检测时间序列
tsmoothie是一个Python库,专门用于时间序列平滑和异常检测。它提供多种平滑技术,包括指数平滑、卷积平滑和谱平滑等,能高效处理单个或多个时间序列。该库支持计算置信区间,便于识别异常值,并实现了滑动窗口平滑和时间序列bootstrap功能。tsmoothie适用于各类时间序列分析任务,是数据科学家和分析师的有力工具。
TSFpaper - 时间序列与时空预测论文精选合集
GithubSpatio-Temporal ForecastingTime Series ForecastingTransformerdeep learningmultivariate forecasting开源项目
本仓库收录了300多篇时间序列与时空预测的论文,涵盖多种预测模型类型。这些论文包括顶级会议和期刊发表的研究成果以及最新的arXiv论文。支持单变量、多变量及不规则时间序列预测,广泛应用于交通和天气等领域。仓库内容持续更新,并推荐热门工具库和最新模型,是时间序列预测研究的重要资源。
tempo - Databricks上的时间序列数据处理工具库
DatabricksGithubPySparkTempo开源项目数据处理时间序列
Tempo是一个基于PySpark的开源时间序列数据处理工具库。它为Databricks上的数据团队提供了一套抽象和函数,简化了时间序列数据的操作和分析。Tempo扩展了PySpark的功能,通过易用的API支持复杂的时间序列分析任务。这个工具库适用于需要在大规模数据集上进行高效时间序列处理的场景。
Awesome-GNN4TS - 时间序列分析中图神经网络的研究进展与应用
GNNGithub图神经网络开源项目时间序列分析机器学习深度学习
本项目汇集图神经网络(GNN)在时间序列分析领域的研究进展和资源,涵盖预测、分类、异常检测和插值等任务。内容包括相关论文、数据集和应用概述,以及面向任务和模型的GNN4TS分类方法,为该领域研究和应用提供参考。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号