Project Icon

tsfeatures

高效提取时间序列特征的R工具包

tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。

TS-TCC - 创新的时间序列无监督表示学习方法
GithubIJCAI对比学习开源项目时间序列自监督学习表示学习
TS-TCC是一种无监督时间序列表示学习框架,利用时间和上下文对比从未标记数据中学习表示。该方法在多个真实数据集上表现优异,适用于少量标记数据和迁移学习场景。TS-TCC还扩展到半监督设置(CA-TCC),相关研究发表于IEEE TPAMI。这一方法为时间序列分析提供了有效的表示学习工具,推动了该领域的发展。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
ComplexHeatmap - R语言复杂热图包 实现多维数据可视化与灵活注释
ComplexHeatmapGithubR语言包开源项目数据分析热图可视化生物信息学
ComplexHeatmap是一个用于创建复杂热图的R软件包,提供灵活的多热图排列和多样化注释功能。该工具可视化不同数据集间的关联并揭示潜在模式,支持单热图、带注释热图、热图列表和行注释等功能。ComplexHeatmap适用于展示基因组数据、甲基化谱和单细胞RNA测序等复杂数据,并能创建增强型OncoPrint、UpSet图和3D热图。其高度定制性使其成为生物信息学和数据科学领域的强大可视化工具。
PaddleTS - 基于飞桨的开源时序分析库 提供全面深度学习模型
GithubPaddlePaddlePaddleTSPython库开源项目时序建模深度学习
PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
aRtsy - R语言生成艺术工具包
GithubR语言aRtsyggplot2开源项目生成艺术随机算法
aRtsy是一个R语言包,为生成艺术提供了简单易用的工具。它包含多种算法,如Langton蚂蚁、分形火焰、流场和迷宫等,用于创作具有随机性的艺术作品。每种算法都有独立的函数和可调参数,涵盖迭代、几何和监督等不同类型的艺术生成方法。aRtsy为数字艺术创作者提供了丰富的创作可能性。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
awesome-time-series-segmentation-papers - 时间序列分割技术论文精选与代码实现
Github变点检测开源项目数据挖掘时间序列分割机器学习语义分割
该项目汇集了时间序列分割领域的经典算法和最新研究成果,涵盖单变量、多变量和张量时间序列的分割方法。内容包括无监督语义分割、变点检测等技术,并提供相关代码实现和数据集链接。这一资源对时间序列处理和模式识别研究具有重要参考价值。
quanteda - R语言文本分析工具包 支持多语言和高性能计算
GithubR包quanteda开源软件开源项目文本分析自然语言处理
quanteda是一个用于文本管理和分析的R语言软件包。它提供智能分词、文本统计和可视化等自然语言处理功能。该软件包支持多语言处理,采用外部指针技术提高性能。4.0版本优化了功能和一致性。quanteda及其扩展包可满足多种文本分析需求,是进行定量文本分析的有力工具。
TagAnomaly - 多时间序列异常检测数据标注与可视化工具
GithubShiny框架开源项目异常检测数据可视化时间序列标记工具
TagAnomaly是一款开源的多时间序列异常检测数据标注工具。它提供直观的可视化界面,支持用户在时间序列上选择和检查异常点,比较不同类别的时间序列,并利用Twitter异常检测算法提供参考。该工具还支持观察类别间分布变化,有助于创建高质量的异常检测模型训练数据集。TagAnomaly适用于需要处理多类别时间序列数据的数据科学和分析项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号