Project Icon

LibtorchSegmentation

高性能C++图像分割库

LibtorchSegmentation是基于LibTorch的C++图像分割库,提供高级API和多种模型架构。支持15种预训练编码器,推理速度比PyTorch CUDA快35%。该库简单易用yet功能强大,适合快速开发和部署各类图像分割应用。

mit-b2 - 高效语义分割的简单Transformer设计
GithubHuggingfaceSegFormerTransformer图像分类开源项目机器学习模型语义分割
SegFormer b2是一个在ImageNet-1k上预训练的编码器模型,采用分层Transformer结构。该模型专为语义分割任务设计,结合了简单高效的架构和出色的性能。虽然此版本仅包含预训练的编码器部分,但它为图像分类和语义分割的微调提供了坚实基础。SegFormer的创新设计使其在多个计算机视觉任务中展现出强大潜力。
flashlight - 用C++编写的机器学习库
C++FlashlightGithub开源项目机器学习神经网络高性能
Flashlight是完全用C++编写的灵活高效的机器学习库,源自Facebook AI Research及其他知名项目。它包括内部接口可修改、核心小于10 MB以及高性能默认设置等特点,支持自动语音识别、图像分类、物体检测和语言建模等应用。提供简单的安装方式和全面的文档,适合研究者和开发者使用。
SOLC - 基于深度学习的SAR和光学遥感影像土地利用分类框架
GithubPyTorchSAR图像分类开源项目深度学习遥感
SOLC是一个开源的遥感图像语义分割框架,专注于SAR和光学影像的土地利用分类。该项目基于PyTorch实现了多种深度学习模型,包括DeepLabv3+、UNet和SegNet等。其中SOLC V7模型采用了双流DeepLabv3+架构,并融合SAGate和ERFB模块,在WHU-OPT-SAR数据集上实现了最佳性能。项目提供了完整的源代码、预训练权重和使用说明,为遥感图像分析研究提供了实用工具。
UniSeg - 多模态3D医学图像通用分割模型
GithubMICCAI 2023UniSeg分割模型医学图像多器官分割开源项目
UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。
super-gradients - 开源工具库简化SOTA计算机视觉模型的训练与部署
GithubSuperGradients开源项目模型训练深度学习计算机视觉预训练模型
Super-Gradients是一个专注于计算机视觉的开源深度学习库。它提供预训练SOTA模型和易用训练工具,支持分类、分割、检测等任务。该项目集成多种训练技巧,兼容主流部署框架,可快速将模型应用于生产。Super-Gradients适用于学术研究和工业应用,是一个高效的计算机视觉开发工具。
yolov8m-building-segmentation - 卫星图像中YOLOv8建筑物分割的精准实现
GithubHuggingfaceYOLOv8ultralyticsplus卫星建筑分割图像分割开源项目模型
该模型专注于通过Yolov8m实现卫星图像中建筑物的精准分割,借助PyTorch以提高分析准确性,mAP@0.5的精度分别为0.62261和0.61275。使用ultralyticsplus库及Python示例可实现快速图像加载与预测,适合高精度建筑物分割的应用需求。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
fbrs_interactive_segmentation - 基于反向传播细化的交互式图像分割算法
GithubPyTorchf-BRS交互式分割开源项目深度学习计算机视觉
f-BRS是一种基于反向传播细化的交互式图像分割算法。该项目提供了PyTorch实现,支持ResNet和HRNet等多种骨干网络。算法通过用户点击交互实现精确对象分割,在GrabCut、Berkeley等多个数据集上进行了评估。项目还提供了图形界面演示。f-BRS在分割精度和速度方面均有显著提升,为计算机视觉领域提供了新的解决方案。
urban_seg - 针对初学者的遥感图片语义分割项目
Githubunicom模型urban_seg多GPU训练开源项目语义分割遥感图片
一个针对初学者的遥感图片语义分割项目,使用在4亿张图片上预训练的unicom模型。该模型在遥感分割中表现出色,仅需4张图片训练即可取得良好效果。提供简单的单GPU和多GPU训练代码,帮助快速上手并提升性能。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号