Project Icon

CoDet

共现引导的开放词汇目标检测方法

CoDet是一种开放词汇目标检测方法,采用共现引导来对齐区域和词语。该方法利用大规模图像-文本对训练,在LVIS和COCO数据集上表现优异。CoDet兼容现代视觉基础模型,并可与Roboflow集成实现自动图像标注。这一方法为开放词汇目标检测领域提供了新的解决方案。

moco - 基于动量对比的无监督视觉表示学习
GithubImageNetMoCoResNet-50对比学习开源项目无监督视觉表示学习
MoCo是一种创新的无监督视觉表示学习方法,利用动量对比在大规模未标注数据上进行预训练。该方法在ImageNet数据集上训练ResNet-50模型,无需标注即可学习出高质量的视觉特征。MoCo v2版本在原基础上进一步优化,线性分类准确率达67.5%。项目开源了PyTorch实现,支持分布式训练,并提供预训练权重。
Binoculars - 无需训练的AI文本检测工具
AI生成文本检测BinocularsGithub开源项目语言模型零样本领域无关
Binoculars是一款无需训练数据的AI文本检测工具,利用语言模型预训练数据集重叠原理识别生成内容。提供Python接口和在线演示,支持零样本检测,目前主要适用于英语文本。该项目为AI文本识别领域引入了新的解决思路。Binoculars适用于学术界、新闻媒体、内容平台等需要识别AI生成文本的场景,有助于维护信息真实性和原创性。
yolov10 - 实现实时端到端目标检测新突破
GithubYOLOv10人工智能实时检测开源项目目标检测端到端
YOLOv10是新一代实时端到端目标检测模型,通过创新的无NMS训练策略和全面的效率-准确度优化设计,在推理速度和计算效率方面实现显著提升。COCO数据集实验结果表明,YOLOv10在不同模型规模下均达到了业界领先的性能和效率水平,为实时目标检测领域带来新的发展方向。
DyCo3D - 动态卷积实现鲁棒3D点云实例分割
3D点云实例分割DyCo3dGithub动态卷积开源项目深度学习计算机视觉
DyCo3D提出了一种新型3D点云实例分割方法,采用动态卷积技术处理实例尺度变化问题。该方法结合大范围上下文信息和轻量级Transformer,在ScanNetV2和S3DIS数据集上取得领先结果,推理速度提升25%以上。DyCo3D简化了传统bottom-up方法的复杂流程,对超参数不敏感,为3D点云实例分割领域提供了高效且鲁棒的新方案。
autodistill - 使用大型、较慢的基础模型来训练小型、较快的监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务
AutodistillGithubRoboflowinstance segmentationmachine learningobject detection开源项目
Autodistill利用大型基础模型训练小型快速监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务,并计划扩展至语言模型。可在本地硬件或云端运行,通过插件接口连接基础和目标模型插件,减少依赖和许可证冲突,确保高效便捷的模型训练与部署。
LD - 高效提升目标检测模型性能的定位知识蒸馏方法
COCOGithubPASCAL VOC定位蒸馏开源项目目标检测知识蒸馏
LD项目提出了一种创新的定位蒸馏方法,旨在高效传递教师模型的定位知识到学生模型。该方法重构了定位知识蒸馏过程,并引入了有价值定位区域的概念,有选择地蒸馏语义和定位信息。实验结果显示,在不增加推理时间的前提下,LD能将GFocal-ResNet-50模型在COCO数据集上的AP从40.1提升至42.1。这种简单有效的蒸馏方案适用于多种密集目标检测器。
owlvit-base-patch32 - OWL-ViT:基于CLIP的开放词汇目标检测模型
CLIPGithubHuggingfaceOWL-ViT开源项目模型目标检测计算机视觉零样本学习
OWL-ViT是一种基于CLIP的目标检测模型,专注于开放词汇和零样本检测任务。它结合了ViT结构的视觉编码器和因果语言模型的文本编码器,通过端到端训练实现了灵活的文本条件目标检测。该模型支持单一或多个文本查询,能够在未见过的类别上进行定位和分类,为计算机视觉领域的研究提供了新的工具和方向。
deepdetect - 用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架
APIDeepDetectGithub图像分类开源项目机器学习深度学习
DeepDetect是一个用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架。它专注于易用性和高性能,支持分类、目标检测、分割、回归等任务,适用于图像、文本和时间序列数据。该工具可自动将模型转换为嵌入式平台(如TensorRT、NCNN),无需数据库,所有数据和模型参数均存储在文件系统中。DeepDetect通过JSON格式通信,提供Python和Javascript客户端,易于集成到现有应用中。
yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
T-Rex - 融合文本和视觉提示的通用目标检测模型
APIGithubT-Rex2开源项目目标检测视觉提示计算机视觉
T-Rex2是一款融合文本和视觉提示的通用目标检测模型。它突破传统模型局限,具备零样本检测能力,适用于农业、工业和生物医学等领域。该模型支持交互式视觉提示、通用视觉提示和文本提示三种工作流程,满足多样化的目标检测需求。项目提供在线演示和API接口,便于快速体验和集成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号