Project Icon

continual-learning-baselines

综合持续学习策略基准与评估平台

该项目提供了一套持续学习策略和基线示例,基于Avalanche库实现多种算法,如Less-Forgetful Learning和Elastic Weight Consolidation。项目在Permuted MNIST、Split CIFAR-100等数据集上进行了评估,可重现原始论文结果或自定义参数。这为持续学习研究提供了可靠的基准平台,便于比较不同策略的性能。

continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningGithubNeurIPSPyTorchSynaptic Intelligenceincremental learning开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
avalanche - 基于 PyTorch 的持续学习开源库
AvalancheContinual LearningGithubPytorch开源开源项目机器学习
Avalanche 是基于 PyTorch 的持续学习开源库,提供快速原型设计、训练和评估工具。其模块包括数据处理、模型训练、评估和日志记录,帮助研究人员提高代码效率和研究影响力。简单示例和教程使用户快速上手,社区支持持续改进库功能。
PyContinual - 多任务持续学习的开源Python框架
GithubPyContinual开源项目持续学习神经网络自然语言处理迁移学习
PyContinual是一个开源的持续学习框架,支持语言和图像多种任务类型。框架包含40多种基线方法,可进行任务增量和领域增量学习。它具有易用性和可扩展性,允许研究者快速更改实验设置和添加自定义组件。PyContinual持续集成最新研究成果,提供最新基准测试结果,为持续学习研究提供了全面的实验平台。
ContinualLM - 语言模型持续学习的开源框架
ContinualLMGithub开源项目语言模型迁移学习连续学习领域适应
ContinualLM是专注于语言模型持续学习的开源框架。它集成多种先进方法,采用统一的训练评估流程。支持领域自适应预训练和端任务微调,包含6个领域数据集。该框架致力于推动语言模型持续学习研究,为研究人员提供灵活有力的工具。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
LLM-Continual-Learning-Papers - LLM持续学习研究论文集锦
GithubLLM大语言模型开源项目持续学习自然语言处理预训练
本项目收录了大语言模型(LLM)持续学习领域的重要论文。涵盖知识持续学习、预训练适应、少样本学习等多个研究方向。这些论文探讨LLM如何学习新知识、适应新领域,同时保持原有能力。项目包括ICLR、NAACL、EMNLP等顶级会议发表的论文,时间跨度从2022年到2023年。收录内容涉及连续预训练、参数高效微调等主题,反映了LLM持续学习领域的最新研究趋势,为研究人员和开发者提供了解该领域最新进展的参考资源。
rl-baselines-zoo - 一站式强化学习训练与优化集成环境
GithubRL Baselines ZooStable-Baselines3开源项目强化学习训练代理超参数调优
RL Baselines Zoo提供一个多元化的强化学习代理集合,支持用户通过简易界面进行代理训练和算法评测。项目含多个环境和算法,带有经过优化的默认超参数,适用于教育和研究用途。注意:此库已停止维护,建议使用更新的RL-Baselines3 Zoo版本。
rl-baselines3-zoo - Stable Baselines3 强化学习代理的训练框架,包括超参数优化和预训练代理
GithubRL Baselines3 ZooStable Baselines3开源项目强化学习训练框架超参数调整
RL Baselines3 Zoo提供一个灵活的训练框架支持众多增强学习算法和环境。此框架便于进行算法基准测试、调优以及AI模型的训练和评估。已集成200多个预训练智能体,并配备全面的文档和安装指南,适合科研和开发使用。
morl-baselines - 多目标强化学习算法库 支持单策略和多策略实现
GithubMO-GymnasiumMORL-BaselinesPyTorch多目标强化学习开源项目算法库
MORL-Baselines是一个多目标强化学习算法库,提供多种PyTorch实现。该项目遵循MO-Gymnasium API,支持单策略和多策略算法,适用于SER和ESR标准。特点包括自动性能报告、代码规范和自动测试。实现了GPI-LS、MORL/D等多种算法,支持连续和离散观察/动作空间,为MORL研究和基准测试提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号