Project Icon

Time-Series-Forecasting-and-Deep-Learning

时间序列预测与深度学习研究资源集锦

本项目汇总了时间序列预测和深度学习领域的研究论文、竞赛、数据集和代码等资源。内容涵盖2017年至2024年的研究成果,包括Transformer和Mamba等模型的创新应用。同时提供实例、博客和教程,为时间序列分析与预测研究提供全面参考。

Time-Series-Library - 开源深度学习时间序列分析工具库
GithubTSLib开源项目异常检测时间序列深度学习预测
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
Time-Series-Analysis-with-Python-Cookbook - Python时间序列分析与预测实战指南
GithubPython开源项目数据科学时间序列分析机器学习预测
这本书全面介绍Python时间序列分析和预测技术,涵盖数据获取、预处理和高级建模。内容包括统计方法、机器学习和深度学习算法,以及使用TensorFlow、PyTorch等框架进行预测。通过实用代码示例和案例研究,读者可以学习处理复杂时间序列数据、进行异常检测,并解决实际业务问题。适合数据分析师和开发者提升时间序列分析技能。
awesome-transformer-nlp - 精选Transformer和迁移学习在自然语言处理的资源
BERTChatGPTGPTGithubNLPTransformer开源项目
该资源库汇集了关于自然语言处理 (NLP) 的顶级深度学习资料,重点包括生成预训练Transformer(GPT)、双向编码器表示(BERT)、注意力机制、Transformer架构、ChatGPT及其在NLP中的迁移学习应用。包含大量研究论文、文章、教程及工具,为研究人员和开发人员提供最新的Transformer技术与应用。此系列资源帮助了解和掌握最新的NLP模型及实现方法,提高自然语言处理任务的性能与效率。
LLM-Reading-List - 大语言模型技术与优化方法的综合阅读列表
GithubLLMTransformer开源项目模型压缩深度学习自然语言处理
该项目收集了大语言模型(LLM)领域的重要论文,主要聚焦推理和模型压缩技术。涵盖Transformer架构、基础模型、位置编码等多个关键领域的研究成果。为LLM技术发展和优化方法的研究提供了全面的参考资料。
Deep_Learning_Machine_Learning_Stock - 深度学习和机器学习在股票市场预测中的应用
Github人工智能开源项目机器学习深度学习算法股票预测
本项目深入探讨了深度学习和机器学习在股票市场预测中的应用。从数据收集到模型训练,涵盖了算法选择、过拟合处理和性能优化等关键环节。项目融合了技术分析和基本面分析,并探讨了长短期预测策略。这是一个面向研究者和开发者的综合性资源,旨在展示人工智能在金融市场分析中的潜力。
llm-paper-notes - 大语言模型论文笔记集锦 追踪AI研究前沿进展
GithubTransformer人工智能大语言模型开源项目自然语言处理论文笔记
该项目汇集了大语言模型领域的关键论文笔记。内容涵盖Transformer架构、注意力机制、预训练方法、缩放法则和检索增强生成等核心主题。通过精炼总结,为研究者和开发者提供LLM领域的核心概念和最新进展概览,便于快速了解AI前沿研究动态。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
Blog - 全面涵盖深度学习与机器学习的教程项目
GithubPython人工智能开源项目机器学习深度学习算法
本项目汇集了深度学习和机器学习领域的系列教程与代码实现。内容覆盖从基础到高级的多个主题,包括神经网络、CNN、RNN、NLP等深度学习技术,以及特征工程、模型评估、异常检测等机器学习方法。每个主题均配有详细解析和Python代码,为AI学习和实践提供了丰富资源。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号