Project Icon

Hypernets

自动机器学习通用框架 支持多种算法与优化技术

Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。

HybridBackend - 异构集群上的高性能推荐系统训练框架
GPU优化GithubHybridBackend嵌入层开源项目推荐系统深度学习框架
HybridBackend是一个为异构集群设计的高性能推荐系统训练框架。它优化了分类数据加载、GPU嵌入层处理和大规模训练通信,提高了wide-and-deep模型的训练效率。该框架兼容现有AI工作流,提供多种安装选项和完善的文档。HybridBackend采用开源Apache 2.0许可证,支持社区贡献。
talos - 全自动化TensorFlow和Keras超参数优化工具
GithubKerasTalosTensorFlow开源项目模型评估超参数优化
Talos通过自动化超参数实验和模型评估,提升了TensorFlow (tf.keras) 和 Keras 的工作流程,无需学习新的语法或模板。用户可以在几分钟内配置和评估超参数实验,适用于各种预测任务。Talos支持 Linux、Mac OS 和 Windows 系统,并兼容 CPU、GPU 和多 GPU 系统,非常适合研究者和数据科学家使用。
autogluon - 自动化机器学习工具,简单实现高精度预测
AutoGluonGithubPython开源项目机器学习深度学习自动化
AutoGluon简化了机器学习任务,让用户可以在图像、文本、时间序列和表格数据上轻松训练和部署高精度模型。它支持Python 3.8至3.11,并可在Linux、MacOS和Windows上运行。只需几行代码即可快速构建端到端机器学习模型,提供详细的安装指南、快速入门教程和丰富的资源,适合各层次用户的需求。
neoml - 跨平台多语言支持的端到端机器学习框架
ABBYYGithubNeoMLONNX开源项目机器学习框架神经网络
NeoML是一个端到端机器学习框架,可用于构建、训练和部署模型,适用于计算机视觉和自然语言处理任务,如图像预处理、分类、OCR和数据提取。支持100多种神经网络层类型和20多种传统机器学习算法,兼容CPU和GPU,并支持ONNX格式。适用的编程语言包括Python、C++、Java和Objective-C,且可运行于Windows、Linux、macOS、iOS和Android平台。
TensorLayer - 高性能且灵活的深度学习和强化学习工具库
GithubTensorFlowTensorLayer开源软件开源项目强化学习深度学习
TensorLayer 是一个基于 TensorFlow 的深度学习和强化学习库,为研究人员和工程师提供多种可定制的神经网络层,简化复杂 AI 模型的构建。它设计独特,结合了高性能与灵活性,支持多种后端和硬件,并提供丰富的教程和应用实例。广泛应用于全球知名大学和企业,如谷歌、微软、阿里巴巴等。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
graph_nets - DeepMind的图神经网络库,支持TensorFlow和Sonnet
GithubGraph NetsSonnetTensorFlow安装开源项目演示
Graph Nets是由DeepMind开发的图神经网络库,兼容TensorFlow和Sonnet。支持Linux和Mac OS X,以及Python 2.7和3.4+。该库适用于CPU和GPU版本的TensorFlow,但需要单独安装TensorFlow。Graph Nets提供了详细的安装指南、使用示例和多个演示,包括最短路径、排序和物理预测任务。用户可以通过Colaboratory在浏览器中运行这些演示,体验图神经网络的灵活性和强大功能。
autokeras - 机器学习自动化工具,简化图像分类任务
AutoKerasAutoMLGithubPython开源项目机器学习深度学习
AutoKeras是由德州农工大学DATA实验室开发的开源项目,旨在简化机器学习流程。通过Keras的AutoML系统,用户能够轻松完成图像分类等任务。支持Python 3.7及以上版本和TensorFlow 2.8.0及以上版本,安装方便,只需使用pip命令。提供详细的官方教程和相关书籍资源,社区鼓励贡献和参与。
Megatron-LM - 优化GPU训练技术 加速大规模Transformer模型
GPU优化GithubMegatron-CoreMegatron-LM分布式训练大语言模型开源项目
Megatron-LM框架利用GPU优化技术实现Transformer模型的大规模训练。其Megatron-Core组件提供模块化API和系统优化,支持自定义模型训练。该项目可进行BERT、GPT、T5等模型预训练,支持数千GPU分布式训练百亿参数级模型,并提供数据预处理、模型评估和下游任务功能。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号