Project Icon

torchdyn

PyTorch数值深度学习库,支持微分方程和数值方法

Torchdyn是一个专注于数值深度学习的PyTorch库,涵盖微分方程、积分变换和数值方法。它提供便捷的工具和层,用于构建神经微分方程和复合模型,并支持GPU加速和多种数值方法。该库与PyTorch和pytorch-lightning高度集成,使得用户能够快速上手,推进研究和应用。

docker-pytorch - PyTorch开发环境的Docker镜像
CUDADockerGPU加速GithubPyTorch开源项目深度学习
docker-pytorch项目提供预配置的Docker镜像,整合Ubuntu、PyTorch和可选的CUDA。该镜像支持GPU加速,便于搭建深度学习环境。用户可运行PyTorch脚本和图形化应用,也可自定义镜像。这个项目为PyTorch开发者提供了便捷的环境配置方案。
evotorch - 基于PyTorch的高性能进化计算库
EvoTorchGithubPyTorch优化算法开源项目强化学习进化计算
EvoTorch是一个基于PyTorch的开源进化计算框架,支持黑盒优化、强化学习和监督学习等多种优化问题。它实现了PGPE、CMA-ES和遗传算法等多种进化算法,并通过GPU加速和Ray分布式计算提高优化效率。EvoTorch设计简洁易用,适合解决各类复杂优化问题,为研究人员和工程师提供了强大的工具支持。
torchgeo - 优化地理空间数据处理的机器学习与遥感工具
GithubPyTorchTorchGeo地理空间数据开源项目机器学习遥感
TorchGeo 是一个基于 PyTorch 的地理空间数据处理库,提供丰富的数据集、采样器、变换和预训练模型,旨在帮助机器学习和遥感专家更高效地处理和探索地理空间数据。该库支持多光谱传感器的预训练模型,并与 PyTorch 数据加载器完全兼容,易于集成到现有的训练工作流中。其全面的文档包括 API 使用指南、教程和示范,非常适合开发者和研究人员使用。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
diffrax - JAX 自动微分与 GPU 支持的数值微分方程解析工具
CDEDiffraxGithubJAXODESDE开源项目
Diffrax 是基于 JAX 的数值微分方程解析库,适用于常微分方程、随机微分方程和受控微分方程的求解。其特点包括多种解析器选择(如 Tsit5、Dopri8、辛解析器、隐式解析器)、使用 PyTree 作为状态存储、支持稠密解和多种反向传播方法,并支持神经微分方程。兼容 Python 3.9+、JAX 0.4.13+ 和 Equinox 0.10.11+。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
DI-hpc - 高性能计算组件加速强化学习算法
CUDADI-HPCGithubPyTorch开源项目强化学习算法加速
DI-HPC是一款专为强化学习算法设计的高性能计算组件,主要用于加速GAE、n-step TD和LSTM等常见模块。该组件支持前向和反向传播,适用于训练、数据收集和测试环节。DI-HPC兼容CUDA环境和多个PyTorch版本,提供简便的安装方式和性能测试工具。通过提升计算效率,DI-HPC为强化学习研究和开发提供了有力支持。
DI-treetensor - 树状张量结构简化深度学习中的复杂计算
DI-treetensorGithubOpenDILabPyTorch开源项目张量树形结构
DI-treetensor是OpenDILab开发的树状张量结构库,支持树形方式进行张量操作,简化了复杂的树形计算过程。该项目提供创建树状张量、数学运算和反向传播等功能,与PyTorch兼容。DI-treetensor为树形数据处理提供了灵活高效的解决方案,适用于深度学习中的复杂数据结构处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号