Project Icon

ML-DL-scripts

机器学习和深度学习的全面脚本库 从分类到部署的解决方案

ML-DL-scripts是一个综合性的机器学习和深度学习Python脚本库。这个项目涵盖了从分类、回归到聚类和时间序列分析等多个领域,同时提供了PyTorch、Fastai和Keras等主流深度学习框架的使用示例。项目还包括图像处理、自然语言处理和异常检测等实际应用案例,以及基于Docker的模型部署配置。这个代码库为数据科学研究和机器学习应用提供了丰富的技术参考资源。

awesome-machine-learning - 机器学习框架与资源汇总 多语言开源项目集锦
Github开源项目数据分析机器学习深度学习自然语言处理计算机视觉
Awesome Machine Learning项目汇集了按编程语言分类的机器学习开源资源。涵盖计算机视觉、自然语言处理、深度学习等领域的框架、库和工具,涉及Python、Java、C++等多种语言。此外还收录相关书籍、课程和博客,为机器学习从业者提供全面参考。项目保持活跃更新,欢迎社区贡献优质资源。
CV - 深度学习视频教程及笔记资源
GithubJupyter NotebookPytorch开源项目数据集深度学习视频讲解
本项目提供深度学习视频讲解及笔记资源,涵盖Pytorch、李沐、吴恩达等名师课程,并附有详细的数据集和实用工具。适合从事AI算法开发、图像处理及语音识别方向的求职者,并提供多家知名企业的内推机会,帮助自学者搭建交流平台,实现技术突破和职业发展。
ai-demos - AI和LLM实践代码示例集合
AIGithubLLMYouTube开源项目演示示例代码
ai-demos是一个开源代码仓库,收集了多个人工智能和大型语言模型(LLM)的构建案例。项目主要展示AI构建相关的示例代码,源自各种技术演示。开发者可以在此获取AI应用开发的实践参考。此外,项目还关联了YouTube上的Deploying AI频道,提供相关演示的原始视频,便于深入学习AI部署知识。
awesome-MLSecOps - 机器学习安全运维工具与资源精选MLSecOps实践指南
AI安全GithubMLSecOps开源工具开源项目攻击向量机器学习
该项目汇集了机器学习安全运维(MLSecOps)领域的开源工具、资源和教程。内容涵盖安全工具、数据保护、代码安全、攻击向量分析等多个方面,为从业者提供全面的参考资料。项目适合不同层次的MLSecOps实践者,有助于提升机器学习系统的整体安全性。
Deep-Learning-Projects - Jupyter notebook深度学习项目集合与实践指南
GitHubGithubJupyter Notebook开源项目教程深度学习项目
Deep-Learning-Projects是一个包含多个深度学习小项目的GitHub仓库,以Jupyter notebook形式呈现。仓库提供详细的项目说明和配套视频教程,涵盖多个深度学习领域。这些资源为不同水平的学习者和开发者提供了实践机会,有助于从理论到实践的学习过程。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Deep learningGithubMachine learning algorithmsPythonRandom ForestsSupport vector machine开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
ml-course - 机器学习课程介绍,涵盖基础理论、实操任务和丰富资源
Deep LearningGithubGradient boostingMachine LearningNaive BayeskNN开源项目
这个机器学习课程介绍了从朴素贝叶斯和kNN到深度学习的基础知识。页面提供了详细的课程笔记、视频资料和练习题。适合初学者和进阶学习者,内容包括线性回归、支持向量机和梯度提升等,是系统学习机器学习的理想资源。
mlops-python-package - MLOps Python工具包,简化机器学习工程实践
GitHub ActionsGithubMLOpsPython包开源项目自动化工具软件开发实践
这是一个集成多种MLOps最佳实践的Python代码库,旨在优化机器学习工程流程。该工具包提供了模型注册、实验跟踪和实时推理等核心功能,同时支持自动化任务、CI/CD集成、配置管理和数据处理等辅助功能。通过灵活且稳健的设计,这个工具包可以帮助开发者更高效地构建和部署MLOps项目,简化整个机器学习生命周期管理。
OpenML-Guide - 开源AI知识和资源的全方位指南
AIGithubOpenML Guide开源开源项目机器学习深度学习
Open DeepLearning为AI学习者提供免费、高质量的课程、书籍、教程和研究论文,涵盖从基础到高级的概念,助力掌握最新的AI技术。无论是初学者还是专家,该开源项目旨在通过明确的学习路径简化学习过程。用户还可以通过GitHub、Discord和Twitter参与社区互动,贡献内容、改进资源和提出建议,提升学习效果。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号