Project Icon

CEEMDAN_LSTM

CEEMDAN与LSTM结合的时序预测模型

CEEMDAN_LSTM是一个Python模块,结合完整集成经验模态分解(CEEMDAN)和长短期记忆(LSTM)神经网络进行时序预测。该项目提供多种预测方法和评估工具,支持灵活的参数设置,适用于金融等领域的复杂时序数据分析。它简化了分解集成预测的实现过程,有助于研究人员和数据分析师快速构建和优化预测模型。CEEMDAN_LSTM支持多种预测方法,包括单一、集成、分别和混合预测等。它还提供了统计测试、热图绘制和DM测试等模型评估工具,有助于全面分析预测结果。

financial-machine-learning - 金融机器学习资源汇总与实践指南
Github开源项目强化学习深度学习算法交易量化交易金融机器学习
这个项目收集了金融机器学习(FinML)领域的精选工具和应用。主要包括Python资源,涵盖深度学习、强化学习和股票预测模型等。此外还提供交易微服务系统和量化机器学习交易等实用内容。项目为金融科技领域的机器学习应用提供了全面的学习和参考资料。
ECG-Heartbeat-Classification-seq2seq-model - 序列到序列深度学习模型实现心电图心跳分类与心律失常检测
ECG心跳分类GithubMIT-BIH数据库序列到序列模型开源项目心律失常检测深度学习
项目利用序列到序列深度学习方法进行心电图心跳分类和心律失常检测,涵盖患者间和患者内两种情况。采用MIT-BIH心律失常数据库评估,提供预处理数据集和训练脚本。模型在分类任务中表现出色,为心脏病学研究提供新方法。代码开源,仅供学术和非商业使用。
sktime-dl - 时间序列分析工具的演变
Githubsktime代码迁移开源项目时间序列机器学习深度学习
sktime-dl项目正在整合到sktime框架中,作为其mini-packages的一部分。原sktime-dl的大多数估计器现已迁移至sktime的深度学习分类和回归模块。项目鼓励开发者参与剩余部分的迁移工作,相关贡献指南可在sktime GitHub仓库的规划问题中查阅。这一变更旨在整合和优化时间序列分析工具,为用户提供更统一的体验。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
speech-emotion-recognition - 开源多模型语音情感识别系统
Emo-db数据集Github开源项目机器学习模型深度学习模型特征提取语音情感识别
speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。
BasicTS - 公平且标准的时间序列预测基准和工具包
BasicTSGithub基准测试工具包开源项目时间序列预测深度学习
BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。
trading-momentum-transformer - 深度学习驱动的Momentum Transformer及其在交易中的应用
GithubLSTMMomentum Transformer交易策略变点检测开源项目深度学习
Momentum Transformer和Slow Momentum with Fast Reversion模型利用深度学习和变革点检测,在波动市场中表现出众。通过多头注意力机制和可解释变量选择网络,这些模型在趋势转折点上展现很强的适应力。经过优化,模型在1995至2020年期间的表现显著提升,尤其在2015至2020年间,有效应对市场不稳定性,提高风险调整后的收益率。
AutoTS - 自动化时间序列预测工具
AutoTSGithubPython包开源项目数据分析时间序列预测自动机器学习
AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。
Large-Time-Series-Model - 大规模生成式预训练时间序列模型
GithubTimerTransformer大规模数据集开源项目时间序列模型预训练
Timer是一款基于生成式预训练Transformer的大规模时间序列模型。该模型在包含10亿时间点的UTSD数据集上预训练,可用于预测、插值和异常检测等多项任务。Timer采用解码器架构,支持灵活序列长度,在少样本场景下表现优异。项目开源了模型代码、数据集和预训练权重,为时间序列大模型研究奠定基础。
iTransformer - 用于多变量时间序列预测的iTransformer模型
GithubTransformer模型iTransformer多变量预测开源项目时间序列预测高效注意力机制
iTransformer是一种用于多变量时间序列预测的开源模型,无需修改任何Transformer模块。它在处理大规模数据时表现出色,具备显著的性能提升和强大的泛化能力。iTransformer已在多种基准测试中表现优异,支持静态协变量和概率发射头。用户可通过pip安装,并使用项目提供的详细训练和评估脚本。更多信息请参阅官方论文。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号