Project Icon

FATE

开源工业级联邦学习框架

FATE是首个工业级开源联邦学习框架,支持企业在确保数据安全和隐私保护的前提下进行协作。基于同态加密和多方安全计算,FATE提供多种联邦学习算法,涵盖逻辑回归、树模型和深度学习等。作为Linux基金会托管项目,FATE致力于推动联邦AI技术在各行业的应用与发展。

tensorflow-federated - 隐私保护的分布式机器学习框架
GithubTensorFlow Federated分散数据开源框架开源项目机器学习联邦学习
TensorFlow Federated是一个开源框架,用于分布式数据的机器学习和计算。它提供高级和低级API,允许开发者在保护隐私的同时利用分散数据进行模型训练和评估。支持自定义联邦学习算法,包含单机模拟环境,适合研究和实验。除了预测模型训练,还可用于分布式数据的聚合分析。
MetisFL - 强大、高效、安全的联邦学习开源框架
BazelDockerGithubMetisFL开源框架开源项目联邦学习
MetisFL是一个基于C++和Python3的开源联邦学习框架,注重可扩展性、效率和安全性。该框架提供完整的联邦学习工作流程,支持多种操作系统,并支持Docker容器部署。MetisFL主要应用于需要保护数据隐私的分布式机器学习场景,为研究人员和开发者提供实用工具。
FedScale - 可扩展的开源联邦学习(FL)引擎和基准测试平台
FedScaleGithub开源项目数据集模型评估联邦学习部署
FedScale是一个可扩展的开源联邦学习(FL)引擎和基准测试平台,提供高级API用于实现FL算法,并在多种硬件和软件环境中进行大规模部署和评估。FedScale包括大规模的FL基准测试,涵盖图像分类、对象检测、语言建模和语音识别等任务,同时提供数据集真实模拟FL训练环境。用户可以通过简单的安装流程在Linux和MacOS上快速部署,并利用丰富的教程和数据集开展实验。
openfl - 开源联邦学习框架助力隐私保护数据协作
GithubOpenFLPython框架开源项目数据隐私机器学习联邦学习
OpenFL是一个开源的Python联邦学习框架,支持多种工作流程和深度学习框架。它专为数据科学家设计,提供灵活可扩展的实验环境,适用于医疗影像等敏感数据场景。该框架由Linux基金会托管,提供多种联邦聚合算法,并欢迎社区贡献。
OpenFedLLM - 联邦学习框架助力大型语言模型隐私数据训练
GithubOpenFedLLM大语言模型开源开源项目模型训练联邦学习
OpenFedLLM是一个开源研究代码库,专注于利用联邦学习技术训练大型语言模型。该项目整合了多种联邦学习算法和LLM训练方法,并提供全面的评估指标。通过支持指令微调和价值对齐,OpenFedLLM为研究人员提供了在分散私有数据上进行LLM训练的有力工具,助力隐私保护和模型性能优化研究。
PFLlib - 个性化联邦学习算法库和评估平台
GithubPFLlib个性化开源项目数据集算法库联邦学习
提供36种传统和个性化联邦学习算法,涵盖3种场景和20个数据集。专注于统计异质性数据,支持高效GPU内存使用及新增的隐私保护功能。新手用户通过简单的示范指南即可快速上手,参与贡献算法、数据集和评估指标。支持非独立同分布和不均衡数据,并可在多达500个客户端上进行训练模拟。
FedML - 跨平台生成式AI和大型语言模型的训练与部署方案
GithubTensorOperaTensorOpera AI分布式训练开源项目生成式AI联邦学习
TensorOpera AI简化了生成式AI和大型语言模型的训练与部署。通过集成的MLOps、调度器和高性能机器学习库,开发者可以在去中心化GPU、多云、边缘服务器和智能手机上经济高效地运行复杂的AI任务。TensorOpera Launch自动配对最经济的GPU资源,消除环境设置和管理难题,支持大规模训练和无服务器部署。TensorOpera Studio和Job Store帮助开发者微调和部署模型,实现高效的跨平台AI工作流。
FL-bench - 开源联邦学习基准测试平台
FL-benchGithub个性化联邦学习开源项目算法实现联邦学习领域泛化
FL-bench是一个开源的联邦学习基准测试平台,实现了多种经典和前沿算法。平台支持个性化联邦学习和域泛化等研究方向,提供简单接口用于自定义数据集和模型。集成了可视化工具,方便研究人员快速实现和对比不同方法。FL-bench旨在促进联邦学习领域的创新与发展。
Awesome-FL - 联邦学习资源汇总与最新研究进展
Artificial IntelligenceComputer VisionData MiningFederated LearningGithubMachine Learning开源项目
该页面汇总了联邦学习领域的重要资源,包括顶级期刊与会议中的论文、框架、数据集、调研、教程和课程。同时涵盖了联邦学习在图数据和表格数据上的应用,以及在人工智能、机器学习、数据挖掘等多个领域的研究成果。通过该页面,用户可以追踪最新的联邦学习论文更新,并有机会参与讨论和贡献资源。
feast - 旨在为机器学习平台团队提供可靠的特征管理工具的开源的特征存储系统
FeastGithub开源项目数据基础设施机器学习模型训练特征存储
Feast是一个开源的特征存储系统,旨在为机器学习平台团队提供可靠的特征管理工具。它通过管理离线存储和低延迟的在线存储,确保特征在训练和服务中的一致性,避免数据泄漏。Feast提供了一个单一的数据访问层,将特征存储与特征检索分离,使模型在不同数据基础设施之间保持可移植性。用户可以通过详细的文档和指南,轻松上手并运行Feast。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号