Project Icon

opus-mt-en-it

基于Transformer的英意机器翻译模型

opus-mt-en-it是一个基于Transformer架构的英语到意大利语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,其中Tatoeba测试集达到48.2 BLEU分和0.695 chr-F分。模型提供预训练权重下载和评估结果查看,可用于英意翻译任务。

FedML - 跨平台生成式AI和大型语言模型的训练与部署方案
GithubTensorOperaTensorOpera AI分布式训练开源项目生成式AI联邦学习
TensorOpera AI简化了生成式AI和大型语言模型的训练与部署。通过集成的MLOps、调度器和高性能机器学习库,开发者可以在去中心化GPU、多云、边缘服务器和智能手机上经济高效地运行复杂的AI任务。TensorOpera Launch自动配对最经济的GPU资源,消除环境设置和管理难题,支持大规模训练和无服务器部署。TensorOpera Studio和Job Store帮助开发者微调和部署模型,实现高效的跨平台AI工作流。
joeynmt - 简洁而清晰的NMT模型实现,促进教育和学习
GRUGithubJoey NMTPyTorchTransformer开源项目机器翻译
Joey NMT框架专为教育而设计,提供简明和清晰的代码库,帮助初学者理解RNN和Transformer等经典NMT架构。其主要特点包括模块化设计,便于修改组件及训练流程,保持代码可读性。支持多个注意力机制、不同的分词类型和多语种翻译,包含详细的文档和教程,适用于模型训练、测试和翻译的各个阶段。最新版本引入分布式数据并行和多项优化,兼容最新的Python和PyTorch版本。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
pytorch-openai-transformer-lm - 基于PyTorch的OpenAI Transformer语言模型实现
GithubOpenAIPyTorchTransformer Language Model开源项目模型预训练
该项目实现了OpenAI Transformer语言模型在PyTorch中的复现,提供了预训练权重加载脚本及模型类。采用固定权重衰减和调度学习率优化模型,支持对ROCStories Cloze任务进行微调,效果接近原始TensorFlow实现。适用于深度学习研究和语言模型的生成与分类任务。
DiT-MoE - 16亿参数规模的稀疏化扩散Transformer模型
DiT-MoEGithub图像生成开源项目扩散模型深度学习混合专家
DiT-MoE项目采用混合专家模型,将扩散Transformer扩展至16亿参数规模。作为扩散Transformer的稀疏版本,DiT-MoE在保持与密集网络相当性能的同时,实现了高效的推理。项目提供PyTorch实现、预训练权重和训练/采样代码,并包含专家路由分析和Hugging Face检查点。通过混合专家方法,DiT-MoE在模型扩展和推理优化方面展现出显著优势。
CTranslate2 - 高效的Transformer模型推理库,提供多种性能优化方案
CTranslate2Github并行执行开源项目性能优化模型压缩转换器模型
CTranslate2是一个用于Transformer模型高效推理的C++和Python库,通过权重量化、层融合、批次重排序等技术,显著提升CPU和GPU上的执行速度并减少内存占用。支持多种模型类型,包括编码器-解码器、仅解码器和仅编码器模型,兼容OpenNMT-py、OpenNMT-tf、Fairseq等框架。其主要特点包括自动CPU检测、代码分发、并行和异步执行以及动态内存使用。
sentence-transformers - 多语言文本和图像嵌入向量生成框架
GithubSentence Transformers向量表示开源项目深度学习自然语言处理预训练模型
sentence-transformers是一个基于transformer网络的框架,用于生成句子、段落和图像的向量表示。该项目提供了多语言预训练模型,支持自定义训练,适用于语义搜索、相似度计算、聚类等场景。这个开源工具在自然语言处理和计算机视觉任务中表现出色,为研究人员和开发者提供了便捷的嵌入向量生成方案。
attention-is-all-you-need-pytorch - PyTorch版Transformer模型,采用自注意力机制
BPEGithubPyTorchTransformer modelWMT 2014 英德翻译开源项目自注意力机制
本项目基于《Attention is All You Need》论文实现了PyTorch版Transformer模型,利用自注意力机制替代传统的卷积和循环结构,在WMT 2014英德翻译任务中表现出色。项目支持模型训练和翻译,部分字节对编码相关部分尚未完全测试,仍在开发中。提供详细的教程,包括数据预处理、模型训练和测试步骤,为用户提供全面指导。
octo - 基于transformer的通用机器人控制策略
AI模型GithubOcto开源项目微调机器人政策预训练模型
Octo是一个基于transformer的扩散策略模型,通过80万条多样化机器人轨迹数据训练而成。该模型支持多个RGB相机输入,可控制各种机器人手臂,并接受语言命令或目标图像指令。其模块化注意力结构使其能高效迁移至新的传感器输入、动作空间和形态。项目提供预训练模型、微调脚本和评估示例,便于研究人员进行深入开发和应用。
openai-translator - 基于OpenAI GPT的多语言翻译PWA应用
GPT-3GithubOpenAI TranslatorPWAReact云计算开源项目
该翻译应用利用OpenAI GPT技术,支持GPT-3.5 Turbo、GPT-4等模型。它是一个可安装在手机和桌面的PWA,采用了React、Vite、Tailwind CSS等技术栈。用户可通过本地开发环境和Docker轻松构建和部署该项目。如果喜欢,请记得为项目点赞,谢谢。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号