Project Icon

ModuleFormer

高效可扩展的模块化语言模型架构

ModuleFormer是一种新型MoE架构,结合棒断注意力头和前馈专家两种专家类型。通过稀疏激活,实现高效性、可扩展性和专业化。基于此架构的MoLM语言模型系列,参数规模40亿到80亿不等,在提高吞吐量的同时保持性能,易于扩展新知识和针对特定任务优化。MoLM在多项基准测试中展现出优秀的效率和性能。

CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
DiT-MoE - 16亿参数规模的稀疏化扩散Transformer模型
DiT-MoEGithub图像生成开源项目扩散模型深度学习混合专家
DiT-MoE项目采用混合专家模型,将扩散Transformer扩展至16亿参数规模。作为扩散Transformer的稀疏版本,DiT-MoE在保持与密集网络相当性能的同时,实现了高效的推理。项目提供PyTorch实现、预训练权重和训练/采样代码,并包含专家路由分析和Hugging Face检查点。通过混合专家方法,DiT-MoE在模型扩展和推理优化方面展现出显著优势。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
DeepSeek-V2 - 兼顾效率与经济性的大规模混合专家语言模型
DeepSeek-V2Github大语言模型开源项目混合专家模型自然语言处理预训练模型
DeepSeek-V2是一款基于专家混合(MoE)架构的大规模语言模型,总参数量达2360亿,每个token激活210亿参数。相较于DeepSeek 67B,该模型在提升性能的同时,显著降低了训练成本和推理资源消耗。DeepSeek-V2在多项标准基准测试和开放式生成任务中表现优异,展现了其在多领域的应用潜力。
Pretrained-Language-Model - 先进预训练语言模型与优化技术集合
GithubMindSporePyTorchTensorFlow开源项目自然语言处理预训练语言模型
此开源项目汇集了多个先进的预训练语言模型和相关优化技术。包含200B参数中文语言模型PanGu-α、高性能中文NLP模型NEZHA、模型压缩技术TinyBERT和DynaBERT等子项目。这些模型在多项中文NLP任务中表现出色,支持MindSpore、TensorFlow和PyTorch等多种深度学习框架。
SmolLM-360M - 3.6亿参数的高效语言模型 专注常识推理和知识理解
GithubHuggingfaceSmolLM人工智能开源项目模型模型训练神经网络语言模型
SmolLM-360M是一款拥有3.6亿参数的高效语言模型,基于Cosmo-Corpus数据集训练而成。该模型利用Cosmopedia v2合成教材、Python-Edu教育样本和FineWeb-Edu网络教育资源等高质量数据,在常识推理和世界知识等多项基准测试中表现出色。SmolLM-360M支持CPU/GPU部署,并提供8位和4位量化版本以优化内存使用。这款模型主要面向英语内容生成和理解,可作为AI辅助工具在多种场景中应用。
llama-moe - 专家混合模型,支持持续预训练
GithubLLaMALLaMA-MoEMoESheared LLaMASlimPajama开源项目
LLaMA-MoE是基于LLaMA和SlimPajama的开源专家混合模型。通过将LLaMA的FFN划分为稀疏专家并加入top-K门控,模型在优化的数据采样权重下进行持续预训练。特点包括轻量化、多种专家构建方法、多种门控策略和快速预训练,适合部署和研究。提供详细的安装指南和技术文档,帮助用户快速使用并评估模型性能。
LLM-Pruner - 通过结构剪枝技术高效压缩大型语言模型的工具
GithubLLM-Pruner压缩多任务解决开源项目结构剪枝自动剪枝
LLM-Pruner项目专注于通过结构剪枝技术高效压缩大型语言模型,在保留多任务处理能力的同时减少训练数据需求。仅需3分钟剪枝及3小时后训练,此方法利用50,000个公开样本快速实现剪枝与再训练。支持Llama系列、Vicuna、BLOOM、Baichuan等多种LLM,自动化剪枝过程简化了新模型的剪枝步骤。该技术允许根据需要调整模型规模,优化资源使用。
mformer-sanctity - 开源深度学习NLP开发框架
GithubHuggingfaceMIT协议transformers开源协议开源项目模型编程语言软件许可
这是一个基于MIT许可证的开源自然语言处理项目,使用transformers技术进行开发。该框架旨在为NLP应用开发提供支持,集成了相关工具和技术组件。框架采用模块化设计,便于开发者进行自然语言处理相关功能的开发和部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号