Project Icon

GroundingDINO

语言驱动的开放集目标检测模型

GroundingDINO是一个基于语言的开放集目标检测模型,能够检测图像中的任意物体。该模型在COCO数据集上实现了零样本52.5 AP和微调后63.0 AP的性能。GroundingDINO支持CPU模式,可与Stable Diffusion等模型集成用于图像编辑,还能与SAM结合实现分割功能。此外,项目提供了丰富的演示和教程资源,为开放世界目标检测领域带来了新的解决方案。

grounding-dino-base - 实现开放集目标检测的创新模型
GithubGrounding DINOHuggingface开源项目模型深度学习物体检测计算机视觉零样本学习
Grounding DINO是一种创新的开放集目标检测模型,结合DINO与文本预训练技术。通过整合文本编码器,该模型将闭集目标检测扩展为零样本目标检测。在COCO数据集上,Grounding DINO达到了52.5 AP的性能。此模型支持研究人员直接进行零样本目标检测,无需额外的标记数据即可识别图像中的物体。
grounding-dino-tiny - Grounding DINO模型实现开放集目标检测的创新突破
GithubGrounding DINOHuggingface开源项目模型深度学习目标检测计算机视觉零样本学习
Grounding DINO模型通过结合DINO与接地预训练技术,实现了开放集目标检测。该模型添加文本编码器,扩展了传统闭集检测模型的能力,可进行零样本目标检测。在COCO数据集上,Grounding DINO取得了52.5 AP的优秀成绩,为计算机视觉中未标记物体的识别提供了新的解决方案。
Grounding-DINO-1.5-API - 先进的开放集目标检测模型系列
GithubGrounding DINO 1.5IDEA Research少样本学习开源项目目标检测零样本迁移
Grounding DINO 1.5是IDEA Research开发的开放集目标检测模型套件,包括专业版和边缘版两个模型。项目提供模型使用示例,模型托管于DeepDataSpace平台。Grounding DINO 1.5 Pro在COCO、LVIS等多个零样本迁移基准测试中性能领先,并在ODinW少样本设置下创造新纪录。该模型在广泛场景中展现出强大泛化能力,推动了开放集目标检测的发展。
DINO - 降噪锚框实现端到端目标检测
COCODINOGithub图像分割开源项目深度学习目标检测
DINO采用改良的降噪锚框,提供先进的端到端目标检测功能,并在COCO数据集上实现了优异的性能表现。模型在较小的模型和数据规模下,达到了63.3AP的优秀成绩。DINO具有快速收敛的特点,使用ResNet-50主干网络仅在12个周期内即可达到49.4AP。项目还提供丰富的模型库和详细的性能评估,用户可以通过Google Drive或百度网盘获取模型检查点和训练日志。
Grounded-Segment-Anything - 融合文本引导的开放世界目标检测与分割工具
GithubGrounded-SAM图像分割开源项目目标检测视觉AI
Grounded-Segment-Anything项目结合了Grounding DINO和Segment Anything模型的优势,能够根据文本提示检测和分割图像中的任意物体。该工具为开放世界场景中的目标检测和分割任务提供了有效解决方案,支持自动标注、3D人体网格重建和图像编辑等多种应用。通过提高检测和分割精度并提升工作效率,Grounded-Segment-Anything为计算机视觉领域带来了显著进展。
Stable-DINO - 基于稳定匹配的高性能目标检测模型
COCO数据集GithubStable-DINO开源项目深度学习目标检测计算机视觉
项目采用稳定匹配算法,结合检测变压器架构,在目标检测领域取得突破。模型在COCO数据集上实现63.8 AP,具有高性能、易用性和低计算开销等特点。Stable-DINO可与现有DETR变体整合,并在多种backbone下表现出色。该技术不仅适用于目标检测,还可扩展到实例分割等相关任务。
MaskDINO - 统一的Transformer架构革新目标检测与分割任务
GithubMask DINOtransformer图像分割开源项目深度学习目标检测
MaskDINO项目提出统一的Transformer架构,整合目标检测、全景分割、实例分割和语义分割任务。该架构实现检测与分割的协同,并在COCO、ADE20K和Cityscapes等主要数据集上取得领先成果。在相同条件下,MaskDINO的性能超越了现有方法,展现出在视觉任务中的卓越潜力。
dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
dinov2-giant - 无监督大规模视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-giant是一款基于Vision Transformer架构的大规模视觉模型,采用DINOv2无监督学习方法训练。该模型能够从未标注的图像中提取强大的视觉特征,将图像分割为固定大小的块序列作为输入,通过Transformer编码器处理后输出图像的隐含表示。研究人员可利用此预训练模型作为基础,添加简单的线性层即可完成各种下游视觉任务的微调,为计算机视觉领域提供了强大的基础工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号