Project Icon

T-Rex

融合文本和视觉提示的通用目标检测模型

T-Rex2是一款融合文本和视觉提示的通用目标检测模型。它突破传统模型局限,具备零样本检测能力,适用于农业、工业和生物医学等领域。该模型支持交互式视觉提示、通用视觉提示和文本提示三种工作流程,满足多样化的目标检测需求。项目提供在线演示和API接口,便于快速体验和集成。

TRex - 高效屏幕文本识别与提取工具
GithubOCRTRexmacOS开源项目文本提取菜单栏应用
TRex是一款功能强大的OCR工具,可从屏幕上的任何内容中提取文字。支持PDF、截图和视频等多种格式,无需网络连接即可使用。该工具提供菜单栏快捷访问、全局快捷键和自定义词库等功能,并支持自动化操作和URL scheme集成。TRex适用于各种工作和学习场景,能够快速、准确地获取文本信息。
detrex - 开源Transformer检测算法工具箱
Detectron2GithubPytorchTransformerdetrexobject detection开源项目
detrex是一个开源工具箱,专为最先进的Transformer检测算法提供支持。该工具箱基于Detectron2构建,并参考了MMDetection和DETR的模块设计。detrex模块化设计,提供强大基线,通过优化超参数将模型性能提升至0.2至1.1AP。该工具箱轻量易用,支持最新算法如Focus-DETR、SQR-DETR、Align-DETR、EVA-01和EVA-02,帮助用户构建定制模型。
tr - 高效的离线OCR文本识别与文档理解SDK
CRNNGithubOCRTransformertr多模态大模型开源项目
tr是一款离线OCR文本识别SDK,核心采用C++开发并提供Python接口,支持多行文本识别和多模态大模型集成。tr结合CRNN与TransformerEncoder,提供高效且资源占用低的OCR解决方案,适用于如弯曲文本和图表等复杂场景。最新版本优化了C++接口、支持Python2、多线程功能,并去除了对opencv-python和Pillow的依赖。提供简洁的下载与安装指引,及详细的示例代码便于快速部署和测试。
rtdetr_r50vd - 全新RT-DETR模型提升精度与速度的实时物体检测方案
GithubHuggingfaceRT-DETRYOLO变压器实时应用开源项目模型目标检测
RT-DETR是面向实时物体检测的创新模型,通过混合编码器和最小化不确定性查询选择,实现高精度和快速检测。模型在COCO和Objects365数据集训练,支持速度调整以适应多种场景。RT-DETR-R50/R101在COCO上分别取得53.1%和54.3%的平均精度,在T4 GPU上达到108和74 FPS,性能超过YOLO模型。
detr - Transformer架构重塑目标检测流程
DETRGithubTransformer开源项目深度学习目标检测计算机视觉
DETR项目运用Transformer架构创新性地改进了目标检测方法。该方法将传统的复杂流程转化为直接的集合预测问题,在COCO数据集上达到42 AP的性能表现,同时计算资源消耗减半。DETR结合全局损失函数与编码器-解码器结构,实现了图像的高效并行处理,大幅提升了目标检测的速度和准确性。项目开源了简洁的实现代码和预训练模型,便于研究人员进行深入探索和实际应用。
detectron2 - Facebook开源的高性能目标检测和图像分割框架
Detectron2Github图像分割开源项目深度学习目标检测计算机视觉
Detectron2是Facebook AI Research开发的开源计算机视觉库,提供先进的目标检测和图像分割算法。它支持全景分割、Densepose和级联R-CNN等功能,可用于研究项目和生产应用。该库训练速度快,支持模型导出,并提供大量预训练模型。Detectron2为研究人员和开发者提供了强大而灵活的工具,推动计算机视觉技术的发展和应用。
trex - 结构化数据转换工具,支持正则表达式与上下文无关语法
GithubTrex功能路线图安装指南工具使用开源项目数据转换
Trex是一款将非结构化数据转换为结构化数据的工具。通过指定正则表达式或上下文无关语法,Trex能智能地调整数据以符合指定的架构。用户可以通过Python客户端和API密钥,在云端或本地系统中进行自托管。Trex具备结构化JSON生成、自定义CFG生成和正则生成等功能,且处理速度显著提升,并有明确的开发计划,以满足更多智能模型需求。
rtdetr_r101vd_coco_o365 - 实时目标检测革新者RT-DETR超越传统性能表现
GithubHuggingfaceRT-DETR开源项目模型模型训练深度学习目标检测计算机视觉
RT-DETR通过混合编码器架构和不确定性最小化查询选择方法实现目标检测任务。在COCO数据集测试中,RT-DETR-R101版本达到56.2% AP精度,T4 GPU上处理速度为74 FPS。模型可通过调整解码器层数实现速度与精度的灵活平衡,为实时目标检测领域提供新的技术方案。
grounding-dino-base - 实现开放集目标检测的创新模型
GithubGrounding DINOHuggingface开源项目模型深度学习物体检测计算机视觉零样本学习
Grounding DINO是一种创新的开放集目标检测模型,结合DINO与文本预训练技术。通过整合文本编码器,该模型将闭集目标检测扩展为零样本目标检测。在COCO数据集上,Grounding DINO达到了52.5 AP的性能。此模型支持研究人员直接进行零样本目标检测,无需额外的标记数据即可识别图像中的物体。
rexnet_150.nav_in1k - 高效的图像识别与特征提取
GithubHuggingfaceImageNet-1kReXNettimm图像分类开源项目模型特征提取
ReXNet是一款在ImageNet-1k数据集上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号