Project Icon

Bayesian-Neural-Networks

在PyTorch中实现的贝叶斯神经网络近似推断方法

项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。

bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
bayesian-flow-networks - 将贝叶斯方法与流网络相结合的生成模型新框架
Bayesian Flow NetworksGithub开源项目机器学习概率模型深度学习生成模型
Bayesian Flow Networks是一个结合贝叶斯方法和流网络的生成模型框架。项目提供完整代码实现,包含连续和离散数据的贝叶斯流定义,以及连续时间和离散时间的损失函数。支持MNIST、CIFAR-10和text8等数据集的训练、测试和采样。此框架在图像和文本生成任务中表现出色,为生成模型研究开辟新方向。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
BayesianDeepLearning-Survey - 贝叶斯深度学习的不断更新综述
Github人工智能开源项目机器学习概率模型深度学习贝叶斯深度学习
本项目是贝叶斯深度学习(BDL)的持续更新综述,扩展自ACM Computing Surveys 2020年发表的论文。涵盖BDL在推荐系统、领域适应、医疗保健、自然语言处理、计算机视觉等领域的应用。通过定期更新,为研究人员提供BDL最新进展概述,展示这一框架在多个应用中的潜力。
variational-autoencoder - 变分自编码器参考实现,兼容TensorFlow和PyTorch
GithubMNISTPyTorchVariational Autoencoderjaxtensorflow开源项目
该项目提供了变分自编码器的参考实现,支持TensorFlow和PyTorch。项目中包含了逆自回归流变分家族的示例,通过变分推断对二值MNIST手写数字图像进行拟合。通过重要性采样估计边际似然,展示了高效的训练和验证结果。优化后的测试集边际对数似然达到了-95.33 nats。此外,该项目还提供了JAX实现,能够实现3倍于PyTorch的加速效果。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
botorch - PyTorch驱动的模块化贝叶斯优化库
BoTorchGithubPyTorch开源项目机器学习概率模型贝叶斯优化
BoTorch是一个基于PyTorch的贝叶斯优化库,提供模块化接口用于组合概率模型、采集函数和优化器。该库充分利用PyTorch的自动微分和并行计算能力,支持基于蒙特卡洛的采集函数,并与GPyTorch深度集成。BoTorch主要面向贝叶斯优化和AI领域的研究人员及专业实践者,为实现和测试新算法提供灵活高效的平台。
annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
GANGithubPyTorchReinforcement LearningTransformerlabml.ai开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
gpytorch - 基于PyTorch实现的灵活高斯过程建模工具
GPU加速GPyTorchGaussian processGithubKISS-GPPyTorch开源项目
GPyTorch是一个基于PyTorch实现的高斯过程库,旨在简便地创建可扩展、灵活的高斯过程模型。它通过数值线性代数技术实现了显著的GPU加速,并集成了如SKI/KISS-GP和随机Lanczos展开等先进算法,同时能与深度学习框架无缝结合。支持Python 3.8及以上版本。更多信息、示例和教程请参阅官方文档。
probability - TensorFlow生态系统中的概率推理与统计分析工具
GithubTensorFlow Probability分布计算开源项目概率推理深度学习统计分析
TensorFlow Probability 是一个概率推理与统计分析库,作为 TensorFlow 生态系统的一部分,结合了概率方法与深度网络。其功能包括自动微分的梯度推断,以及通过 GPU 和分布式计算实现对大规模数据集和模型的可扩展性。主要组件包括概率分布、可逆变换、联合分布、概率层和多种概率推断算法,如马尔可夫链蒙特卡洛和变分推断。提供详细教程和案例,帮助用户解决实际问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号