Project Icon

Bayesian-Neural-Networks

在PyTorch中实现的贝叶斯神经网络近似推断方法

项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。

lightning-uq-box - 神经网络不确定性量化开源工具库
GithubLightning-UQ-BoxPyTorch不确定性量化开源项目机器学习深度学习
Lightning-UQ-Box是基于PyTorch的开源库,为神经网络提供多种不确定性量化技术。该库实现了多种UQ方法,支持不同架构和理论基础,便于在数据集上比较方法效果。它简化了UQ在工作流中的应用,降低了使用门槛,有助于促进UQ方法的比较和开发,并注重实验的可重现性。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
mixture-of-experts - PyTorch实现的稀疏门控专家混合层
GithubPyTorch专家混合开源项目机器学习深度学习神经网络
mixture-of-experts项目提供PyTorch版本的稀疏门控专家混合层实现,基于'Outrageously Large Neural Networks'论文。该实现支持自定义专家数量和输入输出维度,并提供训练和评估示例。项目包含CIFAR-10数据集应用实例,展示实际性能。作为深度学习工具,它有助于构建大规模高效的神经网络模型。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
bindsnet - 模拟尖峰神经网络的生物启发机器学习算法
BindsNETGithubPyTorch开源项目强化学习机器学习脉冲神经网络
BindsNET是一个Python库,通过PyTorch的Tensor功能在CPU或GPU上模拟尖峰神经网络(SNNs)。该库旨在开发生物启发的机器学习和强化学习算法,包含丰富的实验示例和结果分析。BindsNET还兼容OpenAI gym环境库,并支持Docker镜像部署。这一项目在生物启发神经与动态系统实验室进行,核心理念是利用尖峰时间依赖可塑性(STDP)来调整神经元间的突触权重,以解决机器学习和强化学习中的问题。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
generative_adversarial_networks_101 - 探索生成对抗网络的核心概念和实践实现
GANGithub人工智能图像生成开源项目深度学习生成对抗网络
该项目全面介绍生成对抗网络(GANs)的基本概念和应用实践。内容涵盖多种GAN模型在MNIST和CIFAR-10数据集上的具体实现,包括DCGAN、CGAN等。通过详细的代码示例、训练过程和结果可视化,展示了GAN的工作原理。项目还提供丰富的参考资料和相关论文,为深入学习和实践GAN提供了有价值的资源。
torch-conv-kan - 引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络
CUDAConvolutional layersGithubKolmogorov-Arnold NetworksPyTorchTorchConv KAN开源项目
项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。
pymc - Python贝叶斯统计建模与概率编程框架
GithubPyMCPython包变分推断开源项目贝叶斯统计建模马尔可夫链蒙特卡洛
PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号