Project Icon

Bayesian-Neural-Networks

在PyTorch中实现的贝叶斯神经网络近似推断方法

项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。

pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANGithubPyTorchpix2pix图像翻译开源项目神经网络
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
Learning-Scientific_Machine_Learning_Residual_Based_Attention_PINNs_DeepONets - 物理信息机器学习在科学计算中的应用与进展
DeepONetsGithubPIMLPINNsRBA开源项目物理信息机器学习
本项目聚焦物理信息神经网络(PINNs)、DeepONets和基于残差的注意力机制(RBA)等科学机器学习技术。内容涵盖从基础概念到高级应用的教程,包括函数逼近、ODE/PDE求解与发现等。项目呈现了PINNs领域的最新研究成果,尤其是RBA在提升性能方面的应用。这些资源对于物理信息机器学习领域的研究人员和工程师具有重要参考价值。
ncps - NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现
CfCGithubLTCNeural Circuit PoliciesPyTorchTensorFlow开源项目
神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
autoregressive-diffusion-pytorch - 自回归扩散模型:无向量量化的图像生成方法
GithubPyTorch图像生成开源项目深度学习神经网络自回归扩散
autoregressive-diffusion-pytorch是一个基于PyTorch的自回归扩散模型实现,源自'Autoregressive Image Generation without Vector Quantization'论文。模型支持序列和图像输入,无需向量量化即可生成高质量图像。项目提供简洁API接口,包含详细使用说明和示例代码,适合研究人员和开发者探索自回归扩散模型。
ai_projects - 多领域机器学习项目开源仓库
AI项目GitHubGithubMiguel Fierro开源项目机器学习深度学习
ai_projects是一个涵盖多个机器学习领域的开源项目仓库。内容包括CNN、转移学习、推荐系统和自然语言处理等主题。每个项目都配有Jupyter笔记本和相关博客文章,为开发者和研究者提供实践资源。仓库定期更新,展示AI技术在实际应用中的最新进展。
deep_sort_pytorch - 使用PyTorch实现的Deep Sort多目标追踪算法
Deep SortGithubMask RCNNPyTorchYOLOv3YOLOv5开源项目
本项目实现了基于PyTorch的Deep Sort多目标追踪算法,结合CNN模型进行特征提取,并采用YOLOv3和YOLOv5等先进检测器代替原始的FasterRCNN。项目还支持多GPU训练和多类别目标追踪,并引入了Mask RCNN实例分割模型。用户可以使用Python和PyTorch轻松启动和自定义项目,适用于行人再识别等任务。详细的更新日志和使用指南使其对机器学习及计算机视觉爱好者和研究人员尤为有用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号