Project Icon

deep-significance

深度神经网络显著性测试的开源解决方案

deep-significance 提供完全测试的显著性测试功能,包括几乎随机顺序(ASO)方法、bootstrap 检验和置换随机化方法。结合 Bonferroni 校正和样本大小分析,兼容 PyTorch、TensorFlow 和 NumPy 数据结构。支持多模型、多数据集和样本级别的比较,帮助用户准确评估模型性能,避免因随机因素导致的错误结论。

CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
subnet9_best - 深度学习模型评估与文档标准化模板
GithubHuggingfacetransformers开源项目机器学习模型模型文档模型训练模型评估
该项目提供了一个标准化的深度学习模型文档模板,涵盖模型描述、应用场景、潜在风险、训练过程和评估方法等关键信息。模板旨在提高模型文档的完整性和透明度,便于开发者记录和用户理解。此外,模板还包含了环境影响评估和技术规格等特色内容,有助于全面了解模型特性。
OpenML-Guide - 开源AI知识和资源的全方位指南
AIGithubOpenML Guide开源开源项目机器学习深度学习
Open DeepLearning为AI学习者提供免费、高质量的课程、书籍、教程和研究论文,涵盖从基础到高级的概念,助力掌握最新的AI技术。无论是初学者还是专家,该开源项目旨在通过明确的学习路径简化学习过程。用户还可以通过GitHub、Discord和Twitter参与社区互动,贡献内容、改进资源和提出建议,提升学习效果。
awesome-machine-learning-interpretability - 负责任机器学习资源综合指南
Github人工智能开源项目机器学习模型治理解释性责任AI
此项目整理了全面的负责任机器学习资源,包括社区和官方指导、教育资源、技术工具等。涵盖解释性、公平性、隐私保护等主题的框架、数据集、书籍、课程。为负责任AI的研究和开发提供宝贵参考。项目保持更新,鼓励社区贡献,致力于推动机器学习的负责任发展。
deep-neuroevolution - 深度神经网络进化算法的分布式实现
Deep NeuroevolutionGenetic AlgorithmsGithubMujocoOpenAI开源项目强化学习
本项目提供分布式深度神经网络训练的多种实现,包括深度遗传算法(DeepGA)和进化策略(ES),用于强化学习。基于并改进了OpenAI的代码,支持本地和AWS运行。项目还包括NeuroEvolution的视觉检测工具VINE和GPU优化加速。用户可通过Docker容器快速启动实验,并使用Mujoco进行高级实验。
stable-diffusion-safety-checker - 基于CLIP模型的图像安全检查工具
CLIP模型GithubHuggingface内容审核图像识别安全检查器开源项目机器学习模型
stable-diffusion-safety-checker是一个开源的图像内容审核工具。该项目利用CLIP模型技术,专注于识别和过滤不适宜内容。它不仅可用于研究计算机视觉模型的性能,还能揭示潜在的偏见问题。尽管在某些分类任务中表现优异,但仍存在局限性。推荐将其应用于学术研究,使用时需谨慎评估相关风险。
t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
deepface - 面部识别与属性分析Python框架
DeepFaceGithub人脸属性分析人脸识别年龄预测开源项目表情识别
deepface是一个综合多模态面部识别和属性分析的Python框架,整合了多种先进模型,如VGG-Face、FaceNet等,实现了从面部检测到验证的自动化处理流程,支持简单到复杂的面部识别任务,适用于多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号