Project Icon

edgeyolo

优化边缘设备性能的模型,支持ONNX和TensorRT导出

EdgeYOLO为边缘设备优化,在Nvidia Jetson AGX Xavier上达34FPS,并通过RH loss提升小型和中型物体检测。支持COCO2017和VisDrone2019数据集,提供多种模型格式和部署代码,包括RKNN、MNN和TensorRT。项目定期更新,并集成了SAMLabeler Pro工具,支持多人远程标注。可快速上手和训练,适配不同设备和应用场景。

tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
YoloDotNet - 基于C#的Yolov8和Yolov10实时目标检测库
GithubYoloDotNet图像处理对象检测开源项目性能优化深度学习
YoloDotNet是基于.NET 8的C#库,支持Yolov8和Yolov10模型进行实时目标检测。该库集成ML.NET和ONNX运行时,并支持CUDA GPU加速,提供分类、目标检测、OBB检测、分割和姿态估计等功能。YoloDotNet在CPU和GPU上均可高效运行,适用于各种计算机视觉应用场景。
yoloair2 - 多模型集成的YOLO目标检测工具库
GithubPyTorchYOLOAir2YOLO系列开源项目模型改进目标检测
YOLOAir2是一个基于PyTorch的YOLO系列算法工具库,集成了YOLOv7、YOLOv5等多种YOLO变体。它统一了模型代码框架和应用方式,支持用户自由组合backbone、neck和head模块,以构建定制化的目标检测网络。除目标检测外,该项目还整合了实例分割、图像分类等相关任务,为计算机视觉研究提供了便利的实验平台。
awesome-object-detection - 提供涵盖R-CNN至YOLOv3等系统目标检测资源
Fast R-CNNFaster R-CNNGithubMask R-CNNR-CNNYOLO开源项目
awesome-object-detection为研究者和开发者提供涵盖R-CNN至YOLOv3等系统目标检测资源,适用于学术研究与实际应用。
TensorRT - 优化深度学习推理的开源平台
CUDADockerGithubNVIDIAONNXTensorRT开源项目
NVIDIA TensorRT 开源软件提供插件和 ONNX 解析器的源码,展示 TensorRT 平台功能的示例应用。这些组件是 TensorRT GA 版本的一部分,并包含扩展和修复。用户可以轻松安装 TensorRT Python 包或根据构建指南编译。企业用户可使用 NVIDIA AI Enterprise 套件,并可加入 TensorRT 社区获取最新产品更新和最佳实践。
rtdetr_r50vd_coco_o365 - 首个实时无NMS的端到端物体检测模型RT-DETR
GithubHuggingfaceRT-DETR变压器开源项目模型灵活调整物体检测速度优化
RT-DETR-R50VD COCO O365通过无NMS的端到端Transformer技术优化物体检测性能,结合高效编码器与精准查询选择,实现速度和准确度平衡。其灵活调整机制在COCO和Objects365数据集预训练中表现突出,超过传统YOLO模型。
YOLOv8-multi-task - 轻量级神经网络实现实时多任务目标检测与分割
GithubYOLOv8多任务学习开源项目目标检测自动驾驶语义分割
YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。
BEVFormer_tensorrt - BEVFormer和BEVDet的TensorRT高效部署方案
BEV 3D DetectionGPU内存优化GithubTensorRT开源项目推理加速量化
本项目实现BEVFormer和BEVDet在TensorRT上的高效部署,支持FP32/FP16/INT8推理。通过优化TensorRT算子,BEVFormer base模型推理速度提升4倍,模型大小减少90%,GPU内存节省80%。同时支持MMDetection中2D目标检测模型的INT8量化部署。项目提供详细基准测试,展示不同配置下的精度和速度表现。
rknn-cpp-Multithreading - RK3588/RK3588S多线程NPU推理加速框架
GithubNPURK3588RKNNYOLOv5多线程开源项目
rknn-cpp-Multithreading项目提供了一个针对RK3588/RK3588S的多线程NPU推理加速框架。通过线程池异步操作rknn模型,显著提高了NPU使用率和推理速度。项目优化了YOLOv5s模型,采用ReLU激活函数,进一步提升了性能。提供了详细的使用说明和不同线程数下的性能测试结果,便于用户参考和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号