Project Icon

MixFormer

基于迭代混合注意力的端到端目标跟踪框架

MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。

mask2former-swin-large-coco-instance - 使用Swin骨干的高效图像分割Transformer模型
COCOGithubHuggingfaceMask2Former图像分割实例分割开源项目模型语义分割
Mask2Former在COCO数据集上的实例分割中表现出色,采用Swin骨干网,通过掩码预测和标签分类统一处理多种分割任务。相比MaskFormer,其改进的多尺度变形注意力机制提升了性能,并且不增加计算量的情况下优化了训练效率。此模型可以用于实例分割,提供多种微调版本供不同需求使用。
flatformer - 优化点云变换器性能
3D目标检测FlatFormerGithubWaymo数据集开源项目点云transformer自注意力机制
FlatFormer是一种新型点云变换器算法,采用扁平化窗口注意力机制提高处理效率。在Waymo开放数据集上,它实现了领先的精度,并比现有方法快4.6倍。FlatFormer首次在边缘GPU上达到实时性能,为自动驾驶等对延迟敏感的应用开辟新途径。该算法通过平衡空间邻近性和计算规律性,减少了结构化和填充开销。
PersFormer_3DLane - PersFormer基于透视变换实现精确的3D车道线检测
3D车道线检测GithubOpenLane基准PersFormerPyTorch实现开源项目透视变换
PersFormer是一种创新的3D车道线检测模型,采用基于Transformer的模块生成BEV特征并参考相机参数。模型能同时进行2D和3D车道检测,提升特征一致性与多任务学习效果。PersFormer在OpenLane和Apollo 3D Lane Synthetic数据集上的表现优异,超越了多种现有方法,并提供简便的安装与评估说明以及详细的训练和测试指南,成为3D车道检测领域的重要进展。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
mformer-care - 基于Transformers的多模态深度学习模型
GithubHuggingfacetransformers开源开源项目机器学习模型深度学习自然语言处理
mformer-care是一个基于Hugging Face Transformers库开发的开源项目,采用MIT许可证,支持英语语言处理。该项目利用Transformer架构实现多模态数据的处理与分析。
siam-mot - 区域基的多目标追踪网络
CVPRGithubSiamMOT多目标跟踪开源项目深度学习运动模型
SiamMOT是一种基于区域的连体多目标追踪网络,通过在帧间估算对象实例的运动,实现目标检测和关联。项目展示了显式和隐式运动建模的重要性,显著提升了在MOT17、TAO-person和Caltech Roadside Pedestrians数据集上的性能,且在HiEve数据集上超越了ACM MM'20 HiEve Grand Challenge的获胜者。SiamMOT在单个现代GPU上以每秒17帧的速度运行,支持对人或人和车辆的联合追踪,并提供丰富的预训练模型供用户使用。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
PoseFlow - 高效实时人体姿态追踪算法
GithubPoseFlow人体姿态跟踪多人姿态估计开源项目深度学习计算机视觉
PoseFlow是GitHub上的开源人体姿态追踪项目,在实时多人追踪方面表现出色。它在PoseTrack挑战赛中achieve了高精度,支持各种数据集和可视化。该算法结合了深度学习和计算机视觉技术,适用于动作识别、行为分析等AI应用。PoseFlow提供Python实现,易于集成到现有系统中。它集成了AlphaPose和DeepMatching/ORB特征匹配技术,实现了高效准确的追踪。该项目提供完整代码和使用文档,可应用于计算机视觉、动作分析等领域。
detr - Transformer架构重塑目标检测流程
DETRGithubTransformer开源项目深度学习目标检测计算机视觉
DETR项目运用Transformer架构创新性地改进了目标检测方法。该方法将传统的复杂流程转化为直接的集合预测问题,在COCO数据集上达到42 AP的性能表现,同时计算资源消耗减半。DETR结合全局损失函数与编码器-解码器结构,实现了图像的高效并行处理,大幅提升了目标检测的速度和准确性。项目开源了简洁的实现代码和预训练模型,便于研究人员进行深入探索和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号