Project Icon

UCTransNet

融合U-Net与Transformer的医学图像分割网络

UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。

upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
GithubHuggingfaceSwin TransformerUperNet开源项目模型特征金字塔网络视觉语义分割
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
C-Tran - Transformer在多标签图像分类中的应用
GithubTransformers图像分类多标签分类开源项目深度学习计算机视觉
C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。
upernet-convnext-small - 高效语义分割框架融合ConvNeXt技术
ConvNeXtGithubHuggingfaceUperNet图像分割开源项目模型计算机视觉语义分割
UperNet是一种结合ConvNeXt骨干网络的语义分割框架,融合了特征金字塔网络(FPN)和金字塔池化模块(PPM)。它能为每个像素生成语义标签,适用于场景理解和图像分割等计算机视觉任务。该模型提供多种预训练版本,可根据具体需求应用于不同场景。UperNet的设计旨在提高语义分割的准确性和效率,为研究人员和开发者提供了强大的图像分析工具。
TotalSegmentator - 全身器官自动分割工具适用于CT和MR影像
CT图像分割GithubMR图像分割TotalSegmentator医学影像开源项目深度学习
TotalSegmentator是一款自动分割CT和MR图像中主要解剖结构的开源工具。基于大规模数据集训练,可在不同设备和协议的医学影像上实现稳健分割,支持117个CT类别和56个MR类别。工具提供多种子任务,如肺血管、体表和脑出血等特定器官分割。支持命令行和Python API调用,可在CPU或GPU上运行,并提供Docker容器部署。
SAT - 突破性医学图像分割模型,支持多模态多区域文本提示
GithubSAT医学图像分割多模态开源项目文本提示通用分割模型
SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。
CellViT - 基于Vision Transformer的细胞核分割与分类模型
CellViTGithubPanNuke数据集Vision Transformer开源项目深度学习细胞分割
CellViT是一种基于Vision Transformer的深度学习方法,用于数字化组织样本中的细胞核自动实例分割。该项目结合了预训练的Vision Transformer编码器和U-Net架构,在PanNuke数据集上取得了领先性能。通过引入加权采样策略,CellViT提高了对复杂细胞实例的识别能力。它能够快速处理千兆像素级全切片图像,并可与QuPath等软件集成,为后续分析提供定位化的深度特征。
upernet-swin-small - UperNet结合Swin Transformer实现精确语义分割
GithubHuggingfaceSwin TransformerUperNet场景理解开源项目模型视觉转换语义分割
UperNet结合Swin Transformer骨干网络,提供高效的语义分割解决方案,适用于多种视觉任务,实现每像素精确语义标签预测。
FreeU - 扩散模型性能免费提升方法
AI优化FreeUGithub图像生成开源项目扩散模型深度学习
FreeU是一种无需额外训练或资源的扩散模型优化方法。通过调整U-Net架构中的backbone和skip connection,它显著提升了样本质量。这一技术适用于SD1.4、SD1.5、SD2.1和SDXL等多种模型,为AI图像生成领域带来重要进展。FreeU的创新性获得了CVPR2024口头报告的认可。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号