Project Icon

UCTransNet

融合U-Net与Transformer的医学图像分割网络

UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。

SAM-Med2D - 医学图像分割新突破 SAM-Med2D模型
GithubSAM-Med2D医学图像分割开源项目数据集模型训练模型评估
SAM-Med2D是基于Segment Anything Model的医学图像分割模型,在包含4.6M图像和19.7M掩码的大规模数据集上进行微调。该项目涵盖10种医学数据模态、4种解剖结构和病变,以及31个主要人体器官。SAM-Med2D在多个测试集上表现优秀,尤其在点提示和边界框提示方面效果显著,为医学图像分割领域提供了新的解决方案。
UNI - 革新计算病理学的通用自监督模型
GithubUNI全幻灯片图像开源项目病理AI自监督学习计算病理学
UNI是一款为计算病理学开发的通用自监督模型。它利用超过10万张H&E染色全扫描图像进行预训练,在34项代表性任务中表现卓越。UNI具备分辨率无关的组织分类、少样本玻片分类和多种癌症类型分类等能力,为病理学AI模型开发开辟新途径。
UNI - 病理学AI基础模型助力精准医疗诊断
GithubHuggingfaceUNI图像处理开源项目模型深度学习病理学视觉编码器
UNI是一个基于1亿张病理图像预训练的视觉编码器,为病理学AI诊断提供了强大的基础模型。它在34项临床任务中展现出卓越性能,特别是在罕见和代表性不足的癌症类型诊断上。UNI不使用公开数据集进行预训练,有助于研究人员在避免数据污染的前提下构建和评估病理AI模型。该模型遵循CC-BY-NC-ND 4.0许可证,仅限非商业学术研究使用。
UniMatch - 革新半监督语义分割的弱到强一致性方法
GithubUniMatch半监督学习开源项目深度学习计算机视觉语义分割
UniMatch是一个创新的半监督语义分割模型,适用于自然、遥感和医学图像分析。该模型重新定义了弱到强的一致性概念,在Pascal VOC、Cityscapes和COCO等多个标准数据集上实现了领先性能。UniMatch在各种标注比例下均优于现有方法,推动了半监督语义分割技术的发展。
Medical-SAM2 - 基于SAM2框架的2D和3D医学图像精准分割模型
GithubMedical SAM 2医学影像图像分割开源项目深度学习计算机视觉
Medical-SAM2是一个开源的医学图像分割模型,基于SAM2框架开发。该模型支持2D和3D医学图像分割,适用于REFUGE眼底图像和BTCV腹部多器官等数据集。项目提供环境配置、数据准备和训练步骤指南,以及预训练权重。Medical-SAM2为医学图像分析研究提供了实用的工具和资源。
MedSegDiff - 创新医学图像分割框架
GithubMedSegDiff人工智能医学图像分割开源项目扩散模型深度学习
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
neurite - 医疗影像分析神经网络工具箱,支持TensorFlow和Keras
GithubNeuritekerastensorflow医疗影像分析卷积网络开源项目
Neurite是一个专注于医疗影像分析的神经网络工具箱,兼容TensorFlow和Keras,包括多种网络层、实用工具、灵活模型、生成器和回调函数,适合处理、训练和调试医疗影像数据。其主要功能有UNet模型、卷积编码器和解码器、N维网格插值、分割工具和度量指标。该工具可以通过pip简单安装,并提供科研文献引用支持,项目鼓励社区贡献,已在VoxelMorph和brainstorm等项目中使用。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号