Project Icon

mcfly

简化时间序列深度学习的开源框架

mcfly是一个开源的深度学习框架,专门用于时间序列分类和回归。它能直接处理原始数据,无需计算信号特征或专业领域知识,在加速度计数据的活动分类等任务中表现出色。该框架基于TensorFlow 2构建,支持Python 3.10和3.11,并提供可视化工具展示模型配置和性能。mcfly与传统机器学习技术相比具有竞争力,欢迎社区贡献。

sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
mindcv - 基于MindSpore的开源计算机视觉框架
GithubMindCV图像分类开源项目深度学习框架计算机视觉预训练模型
MindCV是一个开源计算机视觉框架,基于MindSpore构建。它集成了经典和最新的视觉模型,并提供预训练权重。通过模块化设计,支持定制化的数据处理、模型构建和训练流程。该框架适用于迁移学习和自定义CV任务开发,可在多种硬件平台上运行。MindCV注重效率与灵活性的平衡,同时提供了详细的教程和示例,方便开发者快速入门和应用。
swift - 轻量级基础架构,专为深度学习开发者打造的训练与推理框架
GithubSWIFT在线工具多模态大模型开源项目模型培训深度学习
SWIFT平台支持超过300种大型语言模型与50多种多模态模型的训练、微调和部署。提供NEFTune、LoRA+、LLaMA-PRO等先进的训练技术及适配器库,针对各种研发和生产环境。同时,平台提供Gradio web-ui及深度学习课程助力初学者快速上手。
lightning-flash - 跨数据领域和任务的AI模型训练与处理解决方案
AIGithubPyTorchlightning-flash开源项目模型训练深度学习
Lightning Flash提供多任务和多数据领域的AI解决方案,用户只需三步即可完成数据加载、模型配置和微调。项目支持多种预训练模型和优化策略,简化深度学习工作流程,适用于各种数据域和任务类型。其功能包括模型预测、训练策略、优化器和调度器选择,以及自定义数据变换。Flash旨在让用户无需自行开发复杂的研究框架,即可在生产环境中应用AI模型。
easy-tensorflow - TensorFlow教程与简化代码示例
Easy-TensorFlowGithubPythonTensorFlow开源项目教程深度学习
Easy-TensorFlow提供详尽的教程和简化的代码实现,旨在简化学习路径。项目涵盖从基础到高级的教程,每个步骤都有全面解释和源代码示例。它强调低层和高层网络训练接口、Tensorboard可视化工具、多GPU支持等特性。无论是新手还是有经验的开发者,都可以通过这些教程更加高效地掌握TensorFlow。
tsfresh - 时间序列特征自动提取和分析的Python开源工具
GithubPythontsfresh开源项目时间序列机器学习特征提取
tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。
metaflow - 提升数据科学项目效率的人性化工具
GithubMetaflowNetflix人工智能开源项目数据科学热门生产部署
Metaflow是一个用户友好的库,专为帮助科学家和工程师管理和建立实际的数据科学项目而设计,最初由Netflix开发。它支持从快速本地原型设计到生产部署,并提供强大的云端可扩展性和依赖管理。适用于各种项目,从传统统计到最先进的深度学习,Metaflow旨在简化机器学习、人工智能和数据科学项目的流程。详细信息请访问Metaflow官网和文档。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号