Project Icon

cutlass

高性能矩阵乘法与混合精度计算的CUDA C++模板库

CUTLASS是一个高性能CUDA C++模板库,旨在高效实现矩阵乘法(GEMM)及其扩展运算。支持各种精度与多个NVIDIA架构,如Volta、Turing、Ampere和Hopper。该库的模块化设计方便用户构建和优化自定义核心和应用程序。3.5.1版本新增特性以提升性能并增加新架构支持。

cutlass-kernels - 针对大语言模型优化的高效CUDA库
CUDACUTLASSFlashAttention-3GPU加速Github开源项目深度学习
CUTLASS Kernels是一个针对大语言模型(LLM)优化的CUDA库,提供了FlashAttention-3的高效实现。该项目支持TF32模式,显著提升性能,主要用于加速LLM的训练和推理过程。开发者可以轻松集成这些核心,为构建高性能AI应用提供强大的基础支持。CUTLASS Kernels需要配合NVIDIA的CUTLASS项目使用,为LLM开发提供了关键的性能优化工具。
MatmulTutorial - CUDA矩阵乘法内核设计与性能优化实例
CUDAGPU性能优化GithubMLIRMatMulTensorOp开源项目
MatmulTutorial项目展示了CUDA矩阵乘法的多种高性能实现,包括自定义、CuBLAS和CUTLASS等。项目通过详细的性能对比,帮助CUDA初学者理解内核设计优化。在A100 GPU上,项目实现比Relay+CUTLASS平均快1.73倍,与CuBLAS性能相当。项目还研究了MLIR生成CUDA内核,性能达到手写内核的86%。
CUDA-GEMM-Optimization - CUDA实现的GEMM优化与性能分析
CUDAGEMMGPU优化Github开源项目性能分析矩阵乘法
该项目展示了一系列针对通用矩阵乘法(GEMM)的CUDA内核优化实现。内容涵盖从基础到高度优化的多个GEMM内核版本,并提供了详细的性能分析。这些内核适用于任意矩阵大小,并针对NVIDIA GeForce RTX 3090 GPU进行了参数调优。项目包含Docker环境配置说明、编译运行指南,以及FP32和FP16 GEMM的性能对比,直观展示了不同优化技术对性能的影响。
cccl - 统一的CUDA C++核心库集合提升开发效率
C++CCCLCUDAGithubNVIDIA并行计算开源项目
CUDA C++ Core Libraries (CCCL) 整合了Thrust、CUB和libcudacxx三个主要CUDA C++库。CCCL为开发者提供高效、安全的编程工具,简化CUDA开发流程。该项目支持多个CUDA工具包版本,具有跨平台兼容性,并通过持续更新来确保API稳定和性能提升。CCCL旨在成为CUDA C++开发的标准库,为GPU编程提供全面支持。
AMGX - 高性能代数多重网格GPU加速求解器库
AmgXGPU加速GithubNVIDIA多重网格法开源项目线性求解器
AMGX是NVIDIA开发的GPU加速线性求解器库,旨在加速计算密集型仿真的线性求解环节。它具有灵活的求解器组合系统,可构建复杂的嵌套求解器和预处理器。AMGX针对大规模并行计算进行了优化,支持单GPU或多GPU运算,并通过C API简化了并行处理。该库支持多精度计算、复数数据类型和分布式求解,适用于隐式非结构化方法。AMGX为科学计算和工程仿真提供了高效的GPU线性代数解决方案。
ppl.llm.kernel.cuda - 优化大语言模型计算的CUDA内核库
AI计算CUDAGPU加速GithubPPL LLM开源项目深度学习
ppl.llm.kernel.cuda是PPL.LLM系统的核心组件,为大语言模型提供CUDA内核实现。该项目针对Ampere和Hopper架构优化,支持x86_64和arm64平台。它提供简单的构建流程,包含NCCL和JIT编译选项,便于性能调优。作为开源项目,ppl.llm.kernel.cuda旨在提高大规模语言模型的计算效率,为AI开发提供底层支持。
gpu.cpp - 简化跨平台GPU计算的轻量级库
C++库GPU计算GithubWGSLWebGPU开源项目跨平台
gpu.cpp是一个轻量级C++库,专注于通用原生GPU计算。它利用WebGPU规范作为可移植的低级GPU接口,支持在多种硬件上运行GPU代码。该库提供高效API,实现快速编译和运行周期,并最小化依赖。适用于GPU算法开发、神经网络实现、物理模拟等需要便携GPU计算的项目。gpu.cpp简化了个人设备上的GPU编程,让开发者能专注于算法实现。
keops - 大规模矩阵运算与自动微分的高效GPU加速库
GPU计算GithubKeOps开源项目核方法符号矩阵自动微分
KeOps是一个开源库,专门用于高效计算大型数组的归约运算。它集成了高效C++程序和自动微分引擎,支持Python、Matlab和R等多种编程语言。KeOps尤其适合处理核矩阵向量乘积、K近邻查询和N体问题等计算,即使在核矩阵或距离矩阵超出内存容量的情况下也能高效运行。与PyTorch GPU基准相比,KeOps在多种几何应用中能实现10-100倍的性能提升,广泛应用于核方法和几何深度学习等领域。
ThunderKittens - 高效瓦片原语框架助力深度学习内核开发
CUDAGPU编程GithubThunderKittens开源项目深度学习矩阵运算
ThunderKittens是一个用于开发高性能CUDA深度学习内核的框架。它基于现代GPU架构设计,通过操作16x16及以上的数据瓦片实现高效计算。框架支持张量核心、共享内存优化和异步数据传输等特性,充分利用GPU性能。ThunderKittens以简洁、可扩展和高速为设计原则,适用于各类深度学习算法的高效实现。
Arraymancer - 提供高效N维数组计算,支持CPU、CUDA和OpenCL
ArraymancerGithubNimndarray开源项目深度学习科学计算
Arraymancer是一个高效且易用的N维数组(tensor)库,支持CPU、CUDA和OpenCL,适用于科学计算、机器学习和深度学习。受Numpy和PyTorch的启发,它包含丰富的数值计算、降维、分类和回归算法。即使不使用机器学习组件也可以操作,支持OpenMP和多种BLAS/LAPACK库,并能在高速Nim编译器下显著提升开发效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号