Project Icon

PaddleDetection

目标检测套件支持多任务开发部署

PaddleDetection是基于PaddlePaddle的目标检测开发套件,支持通用、小目标、旋转框等多种检测任务。它提供PP-YOLOE、PP-PicoDet等高性能模型和丰富的模型组件,注重产业应用,帮助开发者实现从数据准备到模型部署的全流程开发。

sports - 体育中的对象检测与影像分析
GithubRoboflowsports关键点检测图像分割开源项目物体检测
该项目旨在通过对象检测、图像分割和关键点检测等技术,解决体育分析中的多项挑战。提供的体育数据集和工具包能够优化球体追踪、球员号码识别、球员追踪和重新识别,以及相机校准功能。用户可以在Python环境下安装源代码,并利用开源数据集推进体育数据分析的发展。
YOLOMagic - 增强YOLOv5视觉任务框架功能与用户体验
GithubYOLOv5图像推理开源项目注意力机制网络模块视觉任务
YOLO Magic🚀 是一个基于YOLOv5的扩展项目,为视觉任务提供更强大的功能和简化的操作。该项目引入了多种网络模块,如空间金字塔模块、特征融合结构和新型骨干网络,并支持多种注意力机制。通过直观的网页界面,无需复杂的命令行操作即可轻松进行图像和视频推理。无论是初学者还是专业人员,YOLO Magic🚀都能提供出色的性能、强大的定制能力和广泛的社区支持。
omdet-turbo-swin-tiny-hf - 实时开放词汇目标检测模型 支持批量多任务处理
GithubHuggingfaceOmDet-Turbo图像识别开源项目机器学习模型目标检测零样本分类
这是一款基于Transformer的开放词汇目标检测模型。它支持零样本检测,能够识别指定的任意类别目标。该模型的特色在于支持批量处理多张图像,允许为每张图像设置不同的检测类别和任务描述。通过简洁的API接口,该模型可以方便地集成到各种计算机视觉应用中,实现高效的实时目标检测。
yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
detection - 跨平台网络和主机安全检测规则集
Github主机检测规则元数据开源项目检测和狩猎签名网络规则规则集
Detection是一个开源项目,提供了一套相互关联的网络和主机检测规则,旨在提高威胁检测和追踪的可见性和上下文。该项目支持Snort 3、Yara和ClamAV规则,每个规则包含相应元数据,便于交叉引用。项目还提供辅助脚本,用于自动生成基于哈希和证书的Yara规则,为网络安全专业人员提供了实用的工具集,有助于增强安全防御能力。目前支持的规则类型包括Snort 3、Yara和ClamAV,未来还将扩展支持更多签名和格式,持续增强其在网络安全领域的应用价值。
PedSurvey - 行人检测技术综述,从手工特征到深度学习的演进
Github多光谱检测开源项目深度学习目标检测行人检测计算机视觉
PedSurvey项目提供了一个全面的行人检测研究综述,涵盖单光谱和多光谱检测方法。该项目详细介绍了行人检测的流程、手工特征和深度学习方法、多光谱检测技术、数据集和挑战。项目还展示了不同算法在各种数据集上的性能,并发布了新的大规模数据集TJU-DHD-Pedestrian。这为研究人员提供了行人检测领域的最新进展和未来研究方向的参考。
MVDet - 基于特征透视变换的多视角行人检测系统
GithubMVDetMultiviewX数据集多视角检测开源项目特征透视变换行人检测
MVDet是一个开源的多视角行人检测系统,采用特征透视变换技术提高检测精度。项目包含自主开发的合成数据集MultiviewX,为相关研究提供数据支持。在Wildtrack数据集上,MVDet达到88.2%的MODA。项目开放源代码和预训练模型,便于研究人员进行深入研究。
HumanFallDetection - 多摄像头人工智能实时跌倒检测系统
GithubLSTM分类OpenPifPaf人体姿态估计多摄像头跟踪开源项目跌倒检测
HumanFallDetection项目是一个基于多摄像头和人工智能的跌倒检测系统。它整合了人体姿态估计、多目标跟踪和LSTM神经网络技术,实现实时多人跌倒检测。系统支持处理视频文件或实时摄像头数据,提供灵活的命令行配置。这一技术在老年人护理、医疗监控等领域具有重要应用价值,有助于提高安全监测效率。
OpenTAD - 多功能时序动作检测工具箱支持多数据集和前沿方法
GithubOpenTADPyTorch开源工具箱开源项目时序动作检测计算机视觉
OpenTAD是一个基于PyTorch的开源时序动作检测工具箱,支持9个TAD数据集。其模块化设计便于复现现有方法和实现新方法,支持基于特征和端到端的训练模式。该项目提供多种预提取特征,实现了多个前沿TAD方法,并在EPIC-KITCHENS-100和Ego4D 2024挑战赛中表现出色。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号