Project Icon

PointTransformerV3

先进的点云处理框架

PointTransformerV3是一个创新的点云处理框架,在多个基准测试中展现出卓越性能。该项目优化了模型结构,提升了运行速度和处理能力。它适用于室内外场景的语义分割,通过多数据集预训练进一步增强了效果。研究人员可利用开源代码和预训练模型轻松复现结果或应用于自身项目。

GNT - 使用Transformer重建和渲染NeRF模型
GNTGithubNeRFtransformer图像重建开源项目渲染
Generalizable NeRF Transformer (GNT) 是一个用于高效重建和渲染神经辐射场的纯Transformer架构。它通过视图Transformer和射线路径Transformer两个阶段完成场景表示和渲染。GNT在跨场景训练中展示了其在多个数据集上优异的性能和普遍适用性。
Awesome-Transformer-in-Medical-Imaging - Transformer在医学图像分析中的应用进展综述
GithubVision Transformer医学图像分析图像分割图像分类开源项目深度学习
本项目整理了Transformer模型在医学图像分析中的最新研究进展。内容涵盖图像分类、分割、重建、合成等多个领域,系统地归纳和分类了相关论文。项目提供了医学图像分析中Transformer应用的分类体系,详细的参考文献,以及开源代码库链接,为研究人员提供了全面的学习和实践资源。
lidar-bonnetal - LiDAR点云语义分割开源框架
GithubLiDAR-BonnetalSemanticKITTI开源项目深度学习点云语义分割
LiDAR-Bonnetal是一个开源的LiDAR点云语义分割框架,使用距离图像作为中间表示。该项目提供训练管道和多个基于SemanticKITTI数据集的预训练模型。框架支持多种网络架构,如SqueezeNet和DarkNet变体,并提供了这些模型在SemanticKITTI数据集上的预训练权重和预测结果。虽然项目已归档,但其代码和模型仍可用于研究和学习LiDAR数据处理技术。研究者可以利用这些资源进行点云语义分割的相关研究。
PersFormer_3DLane - PersFormer基于透视变换实现精确的3D车道线检测
3D车道线检测GithubOpenLane基准PersFormerPyTorch实现开源项目透视变换
PersFormer是一种创新的3D车道线检测模型,采用基于Transformer的模块生成BEV特征并参考相机参数。模型能同时进行2D和3D车道检测,提升特征一致性与多任务学习效果。PersFormer在OpenLane和Apollo 3D Lane Synthetic数据集上的表现优异,超越了多种现有方法,并提供简便的安装与评估说明以及详细的训练和测试指南,成为3D车道检测领域的重要进展。
PointTinyBenchmark - 目标定位与检测的先进开源工具箱
GithubTinyPersonmmdetection开源项目点监督目标定位目标检测
基于mmdetection的开源工具箱,专注目标定位和检测任务。项目实现了多项先进算法,如小目标检测尺度匹配、单点监督目标定位等。提供丰富资源,支持计算机视觉研究,尤其适用于小目标和点监督场景。为研究人员提供了强大工具,推进计算机视觉领域发展。
Depth-Anything-V2-Large - 单目深度估计新突破:高精度细节与高效性能的完美平衡
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
Depth-Anything-V2-Large是一款基于大规模数据训练的单目深度估计模型。该模型通过595K合成标记图像和62M+真实未标记图像的训练,在细节精度和鲁棒性方面超越了前代版本。与基于SD的模型相比,它不仅更加高效和轻量,处理速度提升了10倍,还在预训练基础上展现出优秀的微调能力。这一模型为计算机视觉领域提供了性能卓越的深度估计解决方案。
Depth-Anything-V2-Base-hf - 高效精细的单目深度估计模型 提供稳健性能
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络模型计算机视觉
Depth-Anything-V2-Base-hf是一个基于transformers库的单目深度估计模型。该模型通过大规模合成和真实图像训练,相比V1版本提供更细致的细节和更强的稳健性。它比基于SD的模型效率高10倍且更轻量化,在预训练基础上展现出色的微调性能。模型采用DPT架构和DINOv2骨干网络,适用于零样本深度估计等任务,在相对和绝对深度估计方面表现优异。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
splatter-image - 基于单一图像的快速3D重建技术 适用于多种物体
3D重建GithubSplatter Image图像处理开源项目深度学习计算机视觉
splatter-image是一个3D重建开源项目,能从单一图像快速生成物体的3D模型。它兼容Objaverse、ShapeNet和CO3D等多个数据集,并提供在线演示。项目使用高斯点云渲染技术,在多类别ShapeNet数据集上表现出色。安装过程简单,支持多GPU训练,无需预处理相机姿态数据。
meshgpt-pytorch - 基于注意力机制的先进3D网格生成框架
3D建模GithubMeshGPT开源项目深度学习神经网络计算机图形学
MeshGPT-Pytorch是一个开源项目,专注于利用注意力机制实现3D网格生成。它基于PyTorch开发,支持可变长度面处理,并提供自动编码器和转换器模型。该项目计划引入文本条件控制功能,实现从文本到3D模型的转换。通过文本条件生成和分层转换器等高级特性,MeshGPT-Pytorch为3D内容创作和研究领域提供了先进的技术支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号