Project Icon

ctrl

条件Transformer语言模型的功能与应用

CTRL模型由Salesforce Research开发,是基于Transformer的语言模型,可以通过控制码实现文本的可控生成。模型适用于创意写作、自动化写作任务及特定格式文本的生成,并可通过微调优化其他自然语言处理应用。其训练数据包括来自多个领域的140GB文本数据,使用TPU v3 Pod及Adagrad优化器进行训练,并评估了环境影响。

codegen-350M-mono - Python程序合成的自动回归语言模型
CodeGenGithubGoogle TPUsHuggingfacePython开源项目模型程序合成自动回归语言模型
该模型基于大量Python语言数据训练,旨在合成程序。它可以通过英文提示生成代码,从而用于代码补全任务。
StableTTS - 轻量级流匹配和DiT驱动的新一代TTS模型
GithubStableTTSTTS模型人工智能开源项目语音合成
StableTTS是一款开源的轻量级中英文语音合成模型,参数量仅为1000万。该项目创新性地结合了流匹配和扩散卷积Transformer技术,灵感源自Stable Diffusion 3。StableTTS提供预训练模型,支持推理、微调和WebUI应用。其独特的模型架构包含扩散卷积Transformer块和流匹配解码器,旨在提升语音合成质量。项目还提供了便捷的训练和推理工具,以及Hugging Face在线演示平台。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
gpt-fast - PyTorch原生高效文本生成项目
GithubPyTorchgpt-fast开源项目性能优化文本生成模型量化
gpt-fast是一个基于PyTorch的高效Transformer文本生成项目,代码精简(<1000行Python),仅依赖PyTorch和sentencepiece。项目特点包括极低延迟、int8/int4量化、推测解码和张量并行,支持NVIDIA和AMD GPU。gpt-fast不是框架或库,而是展示原生PyTorch性能的示例。它支持LLaMA系列和Mixtral 8x7B等模型,提供详细基准测试和多种优化技术。该项目实现了高效的文本生成,展现了PyTorch在AI领域的强大性能。
mamba-370m-hf - 兼容transformers库的高效语言模型
GithubHuggingfaceMambafinetuningtransformers开源项目模型生成
项目是一种与transformers库兼容的语言模型,整合了config.json和tokenizer,以提高文本生成的速度和准确性。建议安装transformers的最新主版本,以及causal_conv_1d和mamba-ssm,以充分利用优化的cuda内核。该项目支持经典的generate API和PEFT微调,使用float32格式进行微调可获得最佳性能表现,从而提升文本生成任务的效率和质量。项目形成了一种与transformers库兼容的模型环境,通过优化策略实现高效文本生成。
t5-large - 统一文本到文本格式的大规模多语言NLP模型
GithubHuggingfaceT5多任务学习开源项目文本生成模型自然语言处理迁移学习
T5-Large是一个基于Text-To-Text Transfer Transformer架构的NLP模型,拥有7.7亿参数。该模型采用统一的文本到文本格式,能够处理机器翻译、文档摘要、问答和分类等多种任务。T5-Large在C4语料库上进行预训练,支持英语、法语、罗马尼亚语和德语,并在24项NLP任务中展现出优秀性能。这个versatile模型为各种文本处理应用提供了强大的基础。
awesome-transformer-nlp - 精选Transformer和迁移学习在自然语言处理的资源
BERTChatGPTGPTGithubNLPTransformer开源项目
该资源库汇集了关于自然语言处理 (NLP) 的顶级深度学习资料,重点包括生成预训练Transformer(GPT)、双向编码器表示(BERT)、注意力机制、Transformer架构、ChatGPT及其在NLP中的迁移学习应用。包含大量研究论文、文章、教程及工具,为研究人员和开发人员提供最新的Transformer技术与应用。此系列资源帮助了解和掌握最新的NLP模型及实现方法,提高自然语言处理任务的性能与效率。
Recurrent-LLM - RecurrentGPT 模拟 LSTM 实现无长度限制文本生成
AI As ContentsGithubRecurrent-LLMRecurrentGPTTransformer开源项目长短时记忆
RecurrentGPT 模拟 LSTM 的长短时记忆机制,解决了 GPT 生成文本长度受限的问题。每次生成时段文本并更新记忆,便于用户观测和修改。这提高了文本生成的可解释性和互动性,并展示了其在互动小说和个性化内容创作中的潜力。RecurrentGPT 运用了认知科学和深度学习的流行设计概念,推动了下一代计算机辅助写作系统的发展。
gritlm - 采用生成代表性指令微调技术的先进语言模型
Generative Representational Instruction TuningGithubGritLM嵌入开源项目生成语言模型
本页面详细介绍了生成代表性指令微调(GRIT)技术,该技术训练大型语言模型同时处理生成和嵌入任务。GritLM 7B在大规模文本嵌入基准测试(MTEB)中树立了新标杆,并在多种生成任务中表现出色。GritLM 8x7B在开放生成语言模型中表现最佳,同时在嵌入任务中保持领先。GRIT结合生成和嵌入训练,无性能损失,并提高了检索增强生成(RAG)的速度超过60%。代码和模型均已免费开放,欢迎社区贡献和使用。
CogView - 中文文字生成逼真图像,支持英文和中文输入
CogViewGithubImageRewardNeurIPS 2023text-to-imagetransformer开源项目
CogView是一个基于4B参数预训练的转换器,用于生成通用领域的文本到图像。最新版本CogView2显著提升了生成速度,并扩展支持英文输入。用户可以通过Github和Wudao平台体验并下载预训练模型。项目还包含超分辨率和图像到文本转换功能,并提供详细的设置和运行指南。该项目获得NeurIPS 2021认可,并推荐使用PB-relax和Sandwich-LN技术稳定训练大型转化器。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号