Project Icon

MogaNet

多阶门控聚合网络在计算机视觉领域的创新应用

MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。

MG-LLaVA - 融合多粒度视觉特征的大语言模型
GithubMG-LLaVA多模态大语言模型多粒度视觉指令调优开源项目性能提升视觉处理
MG-LLaVA是一种创新的多模态大语言模型,通过整合低分辨率、高分辨率和物体中心特征,显著提升了视觉处理能力。模型引入高分辨率视觉编码器捕捉细节,并利用Conv-Gate网络融合视觉特征。同时集成离线检测器的物体级特征,增强了物体识别能力。仅基于公开多模态数据进行指令微调,MG-LLaVA在多项基准测试中展现出优异的感知表现。
mobilenet_v1_0.75_192 - 移动设备优化的轻量级卷积神经网络
GithubHuggingfaceMobileNet V1图像分类开源项目模型深度学习神经网络计算机视觉
MobileNet V1是一款为移动设备优化的轻量级卷积神经网络,在ImageNet-1k数据集上以192x192分辨率预训练。该模型在延迟、大小和准确性间实现平衡,适用于图像分类、物体检测等多种视觉任务。通过Hugging Face框架,用户可轻松使用此支持PyTorch的模型进行1000类ImageNet图像分类。MobileNet V1以其高效性能,为移动设备上的计算机视觉应用提供了实用解决方案。
Generative-AI - 多模态图像合成与编辑技术及其分类
Data ModalityGenerative AIGithubMultimodal Image Synthesis and EditingTaxonomyVisual AIGC开源项目
该项目附有一篇综述论文,全面分析了多模态图像合成与编辑(MISE)和视觉AIGC的发展情况,并根据数据模态和模型架构进行了分类研究。通过此项研究,科研人员和技术开发者可以深入了解神经渲染、扩散方法、自回归方法及对抗生成网络(GAN)等不同技术及其应用,帮助更好地掌握多模态图像合成技术的前沿进展与实际应用。
VideoMamba - 突破性的视频理解状态空间模型
GithubVideoMamba多模态兼容性开源项目状态空间模型视频理解长期视频建模
VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
MVision - 前沿机器视觉与智能算法技术集合
GithubSLAM技术开源项目无人驾驶机器视觉深度学习计算机视觉
MVision专注于探索机器视觉与人工智能的前沿研究和应用。该平台涵盖自然语言处理、深度学习和计算机视觉课程等多个方面,提供如ICDM、NIPS等重要会议的资源链接和最新机器学习研究文献。同时,MVision也关注无人驾驶、动态物体检测等实际应用领域,致力于提供全面的学习和实践资源,以推动技术进步和行业发展。
UniRepLKNet - 统一架构的大核卷积网络,提升多模态识别与时间序列预测精度
GithubUniRepLKNet图像识别多模态识别大核卷积开源项目时间序列
UniRepLKNet项目提出了一个适用于图像、音频、视频、点云和时间序列的大核卷积网络统一架构。通过提供四个设计大核卷积网络的架构指南,显著提升了多模态数据的识别性能。特别是在全球温度和风速预测等挑战性的时间序列预测任务中,UniRepLKNet表现优异,超过了现有系统。这一项目不仅重振了卷积神经网络在传统领域的表现,还展示了其在新兴领域的广泛应用潜力。
MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
HybridNets - 实时多任务交通场景感知网络
GithubHybridNets可行驶区域分割多任务感知开源项目目标检测车道线检测
HybridNets是一个实时多任务交通场景感知网络,集成了交通对象检测、可行驶区域分割和车道线检测功能。该网络可在嵌入式系统上实时运行,在BDD100K数据集的目标检测和车道检测任务中达到了最先进水平。HybridNets平衡了实时性能和多任务准确性,为自动驾驶和高级驾驶辅助系统提供了高效的视觉感知解决方案。
siam-mot - 区域基的多目标追踪网络
CVPRGithubSiamMOT多目标跟踪开源项目深度学习运动模型
SiamMOT是一种基于区域的连体多目标追踪网络,通过在帧间估算对象实例的运动,实现目标检测和关联。项目展示了显式和隐式运动建模的重要性,显著提升了在MOT17、TAO-person和Caltech Roadside Pedestrians数据集上的性能,且在HiEve数据集上超越了ACM MM'20 HiEve Grand Challenge的获胜者。SiamMOT在单个现代GPU上以每秒17帧的速度运行,支持对人或人和车辆的联合追踪,并提供丰富的预训练模型供用户使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号