Project Icon

DiffBIR

基于扩散模型的多任务盲图像修复方法

DiffBIR是一种基于扩散模型的盲图像修复方法,可处理多种图像退化问题,如盲超分辨率、盲人脸修复和盲图像去噪。该方法采用两阶段架构,先进行退化移除,再利用IRControlNet重建图像。DiffBIR在真实世界图像上展现出优异的修复效果,能生成高质量、真实的细节。项目提供开源代码、预训练模型和详细使用说明。

stable-diffusion-2-depth - 基于深度感知的Stable Diffusion AI图像生成模型
GithubHuggingfaceStable Diffusion人工智能图像生成开源项目机器学习模型深度学习
stable-diffusion-2-depth是基于Stable Diffusion 2的深度感知AI图像生成模型。它在原有基础上增加了处理MiDaS深度预测的输入通道,实现了额外的条件控制。该模型能够根据文本提示生成和修改高分辨率图像,主要应用于AI安全部署研究、模型局限性探索和艺术创作等领域。作为开源项目,stable-diffusion-2-depth为AI图像生成技术的进步提供了新的可能性。
ddpm-celebahq-256 - 高效的无条件图像生成与渐进解压的新型扩散模型
DDPMGithubHuggingface图像合成图像降噪开源项目无条件图像生成模型深度学习
本项目使用去噪扩散概率模型,实现了高质量的图像合成,借鉴了不平衡热力学,创新性地结合了变分界限和去噪评分匹配,并通过Langevin动力学实现渐进的解压缩。模型在CIFAR10数据集上取得了9.46的Inception得分和3.17的最新FID得分,在256x256 LSUN上样本质量与ProgressiveGAN相近。推理中可使用离散噪声调度器如ddpm、ddim或pndm,ddim和pndm在速度和质量上表现出色。项目支持用户自主训练模型,并提供官方示例用于推理和训练。
stable-diffusion-2-1-realistic - Stable Diffusion 2.1衍生的高质量写实图像生成模型
DiffusersGithubHuggingfacePhotoChatStable Diffusion开源项目微调文本生成图像模型
stable-diffusion-2-1-realistic是一个基于Stable Diffusion 2.1的改进模型,专注于生成高质量的写实图像。该模型通过120对精选的图像-文本数据进行微调,能够生成逼真的人像和场景。模型支持英语提示词输入,并提供了优化的提示词模板和负面提示词建议,有助于提升输出质量。开发者可以通过Hugging Face Diffusers库集成该模型,也可使用在线推理API快速体验其功能。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
instruction-tuned-sd - 基于指令微调的Stable Diffusion图像编辑模型
GithubStable Diffusion低级图像处理卡通化图像处理开源项目指令微调
该项目探索了一种指令微调Stable Diffusion模型的方法,使其能够根据输入图像和特定指令进行图像编辑。结合FLAN和InstructPix2Pix的思想,项目通过构建指令数据集和训练,提升了模型执行图像转换任务的能力。研究涵盖卡通化和低级图像处理,并开源了相关代码、模型和数据集。
control_v11f1e_sd15_tile - 基于ControlNet的高精度图像超分辨率与细节增强模型
ControlNetGithubHuggingfaceStable Diffusion图像生成开源项目扩散模型模型深度学习
control_v11f1e_sd15_tile是ControlNet v1.1系列中专注于图像细节增强的模型。通过与Stable Diffusion结合,该模型能将低分辨率或模糊图像转换为清晰度更高的图像。这个开源项目不仅支持图像超分辨率处理,还可用于生成与输入图像大小相同但细节更丰富的图像,为数字图像处理提供了新的解决方案。
DiffusionLight - 扩散模型生成镀铬球实现单图像光照估计
Chrome BallDiffusionLightGithub光照估计开源项目扩散模型环境图
DiffusionLight项目提出一种新颖的单图像光照估计技术,通过扩散模型在输入图像中渲染镀铬球。该方法利用大规模图像数据训练的扩散模型,发现镀铬球外观与初始噪声图的关系,并通过LoRA微调实现HDR光照估计。这一技术克服了现有方法在实际场景中的局限性,在多样化环境中展现出优异的光照估计效果和泛化能力。
blur-kernel-space-exploring - 基于编码模糊核空间的图像去模糊新方法
Github图像去模糊开源项目数据增强模糊内核空间深度学习计算机视觉
这个项目开发了一种新颖的图像去模糊技术,通过编码模糊核空间来处理各种模糊类型。该方法采用交替优化算法,可以处理未知的模糊情况,并且易于集成到深度学习模型中。这一技术不仅适用于图像去模糊,还可用于数据增强和模糊生成等相关任务。
DiffusionFromScratch - 实践教程:从零构建和训练稳定扩散模型
GithubStable DiffusionUNet图像生成开源项目教程机器学习
DiffusionFromScratch是一个开源项目,提供精简代码库用于重建稳定扩散模型。项目特点包括单Python脚本实现、支持MNIST和CelebA数据集训练,以及提供多个Colab笔记本。这些笔记本涵盖模型架构探索、UNet模型构建和基于文本生成MNIST图像等内容。项目还展示了演示输出和音乐视频生成示例,为学习稳定扩散模型提供了实用资源。
DeSRA - GAN超分辨率模型伪影智能检测与消除
DeSRAGANGithub人工智能图像处理开源项目超分辨率
DeSRA项目开发了创新方法,用于检测和消除GAN实际场景超分辨率模型中的伪影。该方法能高效识别伪影区域,通过微调策略消除同类伪影,只需少量样本即可。这一技术突破缩小了超分辨率算法在实际应用中的差距,为图像质量提升开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号