Project Icon

scikeras

Keras与Scikit-Learn的无缝集成工具

SciKeras是一个开源项目,旨在为Keras模型提供Scikit-Learn兼容的包装器。作为tf.keras.wrappers.scikit_learn的继任者,SciKeras保持API兼容性的同时,提供了更多功能。该项目支持TensorFlow,可通过pip轻松安装。SciKeras不仅提供详细文档,还有完整的迁移指南,方便用户从原有框架过渡。项目基于scikit-learn 1.4.1post1及以上版本和Keras 3.2.0及以上版本,为机器学习实践者提供了一个强大的集成工具。

ILearnDeepLearning.py - 深度学习和数据科学的开源实践项目集
GithubILearnDeepLearning.pyMedium开源项目数据科学深度学习神经网络
此开源项目库集合了多个与深度学习和数据科学相关的小项目,通过实际操作帮助用户理解复杂的神经网络问题。内容包括详细的代码示例和可视化展示,涵盖梯度下降、神经网络数学原理、过拟合分析、优化器选择、卷积神经网络理论及自定义对象检测模型的训练等。适合希望深入了解和实践深度学习技术的用户,内容实用且丰富。
semantic-kernel - 集成大型语言模型到常规编程语言的SDK
AI插件GithubSDKSemantic Kernel大型语言模型开源项目微软热门
Semantic Kernel是一个开发者工具包,支持将大型语言模型(如OpenAI、Azure OpenAI和Hugging Face)与C#、Python和Java等常规编程语言集成。它通过允许用户定义可自动由AI编排的插件,简化了AI功能的实现和部署过程。适用于企业,提高模块性和可观测性,同时增强安全性。
TensorFlow-Tutorials - TensorFlow 2 深度学习教程
GithubKerasPythonTensorFlow开源项目教程深度学习
这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。
ccs-pykerberos - 简化Kerberos认证的Python高级封装库
Channel BindingsGSSAPIGithubKerberosPython包开源项目认证
ccs-pykerberos是一个简化Kerberos(GSSAPI)操作的Python库。它为客户端/服务器Kerberos认证提供精简的函数集,支持Channel Bindings,兼容Microsoft Extended Protection等服务。项目文档包括构建指南、测试方法和安全注意事项。尽管已归档,开发者仍可fork此项目进行维护。
PySCIPOpt - Python与SCIP优化套件的桥梁
GithubPySCIPOptPythonSCIP优化开源项目接口
PySCIPOpt是一个Python接口库,用于访问SCIP优化套件。它能通过Python构建和求解数学优化模型,支持开发自定义插件如定价器和启发式算法。PySCIPOpt安装简便,易于使用,功能全面,适用于多种优化问题。项目定期更新,文档完善,为Python编程和高性能优化求解提供了有效连接。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
recommenders - 利用TensorFlow构建推荐系统模型的库
GithubKerasTensorFlow Recommenders开源项目推荐系统数据准备模型训练
TensorFlow Recommenders 是一款利用TensorFlow构建推荐系统模型的库。它涵盖了数据准备、模型构建、训练、评估和部署的完整工作流程,基于Keras,旨在为用户提供易学且灵活的体验,能够支持构建复杂模型。只需确保安装TensorFlow 2.x,并使用pip安装即可开始使用。详细的文档和教程能够帮助用户快速入门。
recommender-system-tutorial - 使用TensorFlow和Keras构建推荐系统的实践教程
GithubMovieLens数据集TensorFlow开源项目推荐系统机器学习深度学习
本项目提供了一个详细的推荐系统开发教程,基于TensorFlow Recommenders和Keras。教程介绍了信息检索和推荐系统基础,通过Jupyter notebook展示了MovieLens数据集处理、特征预处理、检索和排序模型构建,以及Spotify Annoy相似项搜索。内容涵盖了推荐系统的核心技术和实践方法,适合学术研究者和业界专业人士学习。
pykeen - 知识图谱嵌入和评估的Python开源库
GithubPyKEENPython安装嵌入模型开源项目知识图谱
PyKEEN是一个专为知识图谱嵌入设计的Python开源库,支持多模态信息的训练与评估。通过pipeline函数提供高层次的可扩展功能,可以轻松训练和评估模型。内置37个数据集和多个模型,支持自定义数据集和模型扩展。集成了Optuna和PyTorch Lightning,适用于多种训练循环和评估方法。访问https://pykeen.readthedocs.io了解更多信息。
tensorflow - TensorFlow与R语言的深度学习框架集成
APIGithubR语言TensorFlow开源项目数据流图机器学习
TensorFlow for R是一个将TensorFlow深度学习框架集成到R语言环境的开源项目。它支持在R中构建和执行TensorFlow计算图,兼容CPU和GPU运算。该项目提供完整的TensorFlow API访问,并包含安装指南和使用文档。适合需要在R中进行机器学习和大规模数值计算的研究人员和数据科学家使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号