Project Icon

Deep-Learning-in-Production

将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境的介绍

项目详细介绍了如何将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境,包括模型转换、API集成、服务器运作及跨框架策略。这一资源库提供实际细节和案例,帮助开发者全面了解部署流程,并通过Flask、C++、Go等多种技术实现模型应用。

Machine-Learning-Roadmap - 机器学习完整学习指南与优质资源推荐
Deep LearningGithubIIT KharagpurKLA CorporationMachine LearningPython开源项目
此页面全面介绍了学习机器学习所需的知识,包括数学和编程基础、机器学习和深度学习课程以及书籍推荐。精选资源助您从零开始掌握机器学习,具备开展项目和参加竞赛的技能。同时,提供热门框架和库的学习资源,适合初学者和进阶者。
deep-learning-containers - 高效优化的TensorFlow、PyTorch与MXNet深度学习环境
AWS Deep Learning ContainersAmazon SageMakerGithubMXNetPyTorchTensorFlow开源项目
AWS Deep Learning Containers提供预配置的Docker镜像,支持TensorFlow、PyTorch和MXNet的模型训练与服务。集成了Nvidia CUDA和Intel MKL库,优化了GPU和CPU实例性能。这些容器已在Amazon SageMaker、EC2、ECS和EKS上进行了测试和验证,确保广泛应用和稳定性能。了解更多关于兼容镜像的信息,助力高效开发与部署AI模型。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
zenml-projects - ZenML构建的生产级机器学习项目集合
GithubMLOpsZenML开源框架开源项目机器学习项目生产级ML用例
ZenML Projects是一个展示使用ZenML构建的生产级机器学习用例集合。该仓库提供了涵盖时间序列、表格数据、计算机视觉等多个ML领域的现成MLOps工作流程。开发者可以直接使用或根据需求调整这些解决方案,快速启动机器学习项目。仓库包含多个由ZenML团队和社区维护的示例项目,覆盖了常见ML应用场景。
CV - 深度学习视频教程及笔记资源
GithubJupyter NotebookPytorch开源项目数据集深度学习视频讲解
本项目提供深度学习视频讲解及笔记资源,涵盖Pytorch、李沐、吴恩达等名师课程,并附有详细的数据集和实用工具。适合从事AI算法开发、图像处理及语音识别方向的求职者,并提供多家知名企业的内推机会,帮助自学者搭建交流平台,实现技术突破和职业发展。
TensorFlow-2.x-Tutorials - 详解TensorFlow 2.0教程,掌握深度学习模型与应用
GithubTensorFlow开源项目机器学习深度学习神经网络视频教程
本教程详细介绍了TensorFlow 2.0的安装与基础操作,并包含线性回归、MNIST、CIFAR10等多个实战案例。通过配套的视频资源,帮助数据科学家和AI研究人员掌握TensorFlow 2.0在深度学习中的实际应用。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
Deep-Learning-Interview-Book - 详尽介绍深度学习求职面试所需的各类知识
Deep Learning Interview BookGithub开源项目机器学习求职攻略深度学习自然语言处理
该指南全面涵盖深度学习领域的求职面试知识,包括数学、机器学习、深度学习、强化学习、计算机视觉、图像处理、自然语言处理、SLAM、推荐算法、数据结构与算法、编程语言(C/C++/Python)、深度学习框架等,旨在帮助求职者高效准备面试。
OpenML-Guide - 开源AI知识和资源的全方位指南
AIGithubOpenML Guide开源开源项目机器学习深度学习
Open DeepLearning为AI学习者提供免费、高质量的课程、书籍、教程和研究论文,涵盖从基础到高级的概念,助力掌握最新的AI技术。无论是初学者还是专家,该开源项目旨在通过明确的学习路径简化学习过程。用户还可以通过GitHub、Discord和Twitter参与社区互动,贡献内容、改进资源和提出建议,提升学习效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号